UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

MAIN EXAMINATION MAY 2010

TITLE OF PAPER: LINEAR SYSTEMS

COURSE CODE: E352

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS:

- 1. Answer question one and any other three questions.
- 2. Question one carries 40 marks.
- 3. Questions 2, 3, 4, and 5 carry 20 marks each.
- 4. Marks for different sections are shown in the right-hand margin

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

This paper contains six (6) pages including this page

(A) The relationship between the input x and the output y for a nonlinear system is given by the equation $y = x^2 + 2x$.

At an operating point $x_0 = 2$

- (i) obtain an approximate linear equation representing this system, and
- (ii) if x changes by +2% what is the change in y, the value of y using the linear equation, and the error in the value of y (13 marks)
- (B) The transfer function of a linear system is $\frac{Y(s)}{R(s)} = \frac{2(s+25)}{s^2 + 15s + 50}$

If the input is a unit step,

(i)determine the response y(t)

(6 marks)

(ii) calculate the steady state error

(1 marks)

(C) For an electromechanical physical system shown in <u>Figure 1</u>, the generator which is driven at a constant speed provides the field voltage for the motor and the motor has an

inertia J_m and bearing friction b_m . Obtain the transfer function $\frac{\theta_L(s)}{V_f(s)}$ (20 marks)

Note: $T_m = k_m I_g(s)$ and $V_g(s) = k_g I_f(s)$

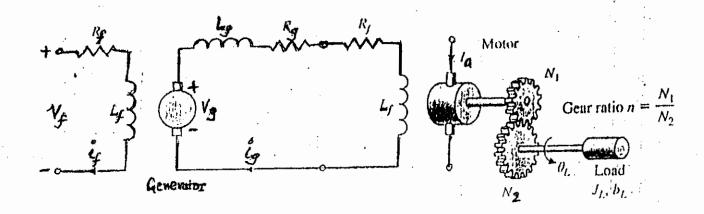


Figure 1

Page 2 of 6

Determine the differential equations that describe the physical system shown in Figure 2 and rewrite the equations in state variable matrix. The state variables $x_1 = i$, $x_2 = v_1$ and $x_3 = v_2$. The input variable is v and the output variable is v_0 .

(20 marks)

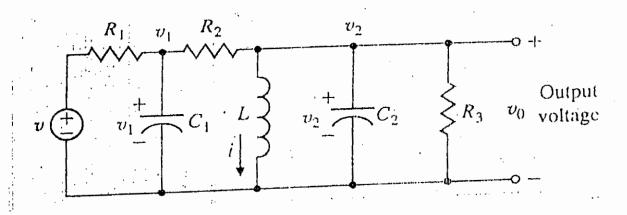


Figure 2

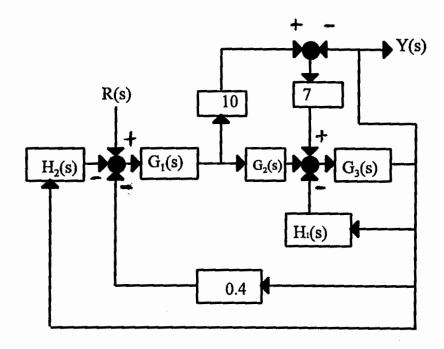
A continuous time-invariant linear system is presented by the following model

$$\dot{x} = \begin{bmatrix} 1 & 2 & 0 \\ -7 & -2 & -36 \\ -1 & 0 & -7 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 4 & 1 & 2 \end{bmatrix} x$$

Obtain the diagonal form realization of this system..

[20 marks]

Use Mason's gain rule to find the transfer function of a fuel-injection engine system model whose block diagram is shown in Figure 4. (20 marks)



Where
$$G_1(s) = G_2(s) = G_3(s) = \frac{1}{s+5}$$
,

$$H_1(s) = \frac{0.1}{s}$$
 and $H_2(s) = 0.1S$

Figure 4

A two tank-system has a transfer function
$$\frac{Y(s)}{R(s)} = T(s) = \frac{1}{s^3 + 10s^2 + 31s + 30}$$
.

Draw a signal flow graph and determine the state variable equations in a matrix form using

- A) the phase variable representation
- B) the input feedforward representation.

Figure 5

	f(t)	F(s)	F(z) f(kt)	
1.	u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$	u(kT)
2.	t .	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
3.	t ⁿ	$\frac{n!}{s^{n+1}}$	$\lim_{a\to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	- (kT) ⁿ
4.	e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$	e ^{-akT}
5.	t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	sin(ωt)	$\frac{\omega}{s^2+\omega^2}$	$\frac{z\sin\omega T}{z^2-2z\cos\omega T+1}$	sin (ω kT)
7.	cos(ωt)	$\frac{s}{s^2+\omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	cos(ωkT)
8.	$e^{-at}sin(\omega t)$	$\frac{\omega}{(s+\alpha)^2+\alpha^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}sin(\omega kT)$
9.	e ^{-at} cos(ωt)	$\frac{s+a}{(s+a)^2+a^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}cos(\omega kT)$
10			$\frac{z}{z+a}$	a ^k cos(kπ)

z-Transform Theorems

	Name	Theorem
1.	Linearity theorem	$z\{af(t)\} = aF(z)$
2.	Linearity theorem	$z\{f_1(t)+f_2(t)\}=F_1(z)+F_2(z)$
3.	Complex differentiation	$z\{e^{-at}f(t)\}=F(e^{aT}z)$
4.	Real translation	$z\{f(t-nT)\}=z^{-n}F(z)$
5.	Complex differentiation	$z\{tf(t)\} = -Tz\frac{dF(z)}{dz}$
6.	Initial value theorem	$f(0) = \lim_{z \to \infty} F(z)$ If the limit exists
7.	Final value theorem $f(\infty)$	$= \lim_{z \to 1} (1 - z^{-1}) F(z)$ if the limit exists and the system
	is stable	