UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION DECEMBER 2009

TITLE OF PAPER:

CONTROL SYSTEMS

COURSE CODE: E430

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

- 1. Answer **question** 1 and any other three (3) questions.
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 5 pages including this page.

	f(t)	F(s)	F(z) f(kt)	
1.	u(t)	$\frac{1}{s}$	$\frac{z}{z-1}$	u(kT)
2.	t	$\frac{1}{s^2}$	$\frac{Tz}{(z-1)^2}$	kT
3.	t ⁿ	$\frac{n!}{s^{n+1}}$	$\lim_{a\to 0} (-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	(kT) ⁿ
4.	e ^{-at}	$\frac{1}{s+a}$	$\frac{z}{z - e^{-aT}}$	e ^{-akT}
5.	t ⁿ e ^{-at}	$\frac{n!}{(s+a)^{n+1}}$	$(-1)^n \frac{d^n}{da^n} \left[\frac{z}{z - e^{-aT}} \right]$	$(kT)^n e^{-akT}$
6.	sin(ωt)	$\frac{\omega}{s^2+\omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$	sin (ω kT)
7.	cos(ωt)	$\frac{s}{s^2 + \omega^2}$	$\frac{z(z-\cos\omega T)}{z^2-2z\cos\omega T+1}$	cos(ωkT)
8.	e ^{-at} sin(ωt)	$\frac{\omega}{(s+a)^2+a^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}sin(\omega kT)$
9.	e ^{-at} cos(ωt)	$\frac{s+a}{(s+a)^2+a^2}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$	$e^{-akT}cos(\omega kT)$
10			$\frac{z}{z+a}$	a ^k cos(kπ)

z-Transform Theorems

	Name	Theorem
1.	Linearity theorem	$z\{af(t)\}=aF(z)$
2.	Linearity theorem	$z\{f_1(t)+f_2(t)\}=F_1(z)+F_2(z)$
3.	Complex differentiation	$z\{e^{-at}f(t)\} = F(e^{aT}z)$
4.	Real translation	$z\{f(t-nT)\}=z^{-n}F(z)$
5.	Complex differentiation	$z\{tf(t)\} = -Tz \frac{dF(z)}{dz}$
6.	Initial value theorem	$f(0) = \lim_{z \to \infty} F(z)$ If the limit exists
7.	Final value theorem $f(\infty)$	$= \lim_{z \to 1} (1 - z^{-1}) F(z)$ if the limit exists and the system
	is stable	

Question 1

a) For a control system with a unit feedback and a feed-forward transfer function

$$G(s) = \frac{10}{s^2 + 2s + 10}$$

Determine

- (i) the closed loop transfer function Y(s)/R(s) [2 marks]
- (ii) the response y(t) when the input is a unit step, and [9 marks]
- (iii) the percent overshoot, rise time and the steady state error. [9 marks]
- (iv) The human like face of the robot might have micro-actuators placed at strategic points on the interior of the malleable facial structure. Cooperative control of the micro-actuators position would then enable the robot to achieve various facial expressions. Sketch a block diagram for a facial expression control system of your own design.

[5 marks]

Question 2

For a system with
$$G(s)H(s) = \frac{Ks(s+2)}{s^2+2s+10}$$
,

a) draw the locus of the roots, and

[16 marks]

b) from the locus plot determine the minimum damping ratio and the value of gain K at this minimum damping ratio.

[9 marks]

Question 3

For a system with $G(s)H(S) = \frac{10^5(s+1)}{(s+50)(s+200)}$,

a) draw Bode diagrams, and

[22 marks]

b) find the gain cross-over frequency.

[3 marks]

Question 4

For the computer compensated system shown in Figure 4 below

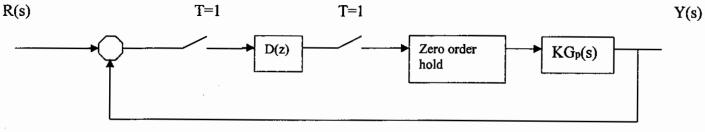


Figure 4

$$D(Z) = \frac{z - 0.05}{z + 0.203}$$

$$KG_p(s) = \frac{K}{s(s+2.995)}$$

$$K = \frac{5}{1.1}$$

Determine

a) Y(z)/R(z)

[15 marks]

b) y(k) when $r(t) = te^{-t}$ for $t \ge 0$.

[10 marks]

Question 5

a) Consider the single -input, single output system described by

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

where
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 3-k & -2 & -4-k \end{bmatrix}, B = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, C = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix},$$

Find the values of K for-which the system is stable.

[12 marks]

b) State the difference between servos and sychros.

[4 marks]

c) Describe, in general, the components of a servomechanism and give examples of each component.

[9 marks]