UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE DEPARTMENT OF ELECTRICAL AND ELECTRONIC **ENGINEERING**

MAIN EXAMINATION DECEMBER 2010

TITLE OF PAPER:

CONTROL SYSTEMS

COURSE CODE: E430

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

- 1. Answer **question** 1 and any other three (3) questions.
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown in the right-hand margin.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

This paper has 5 pages including this page

QUESTION 1

For the computer compensated system shown in Figure 1 below

$$D(Z) = \frac{z - 0.05}{z + 0.203}$$

$$KG_{p}(s) = \frac{K}{s(s + 2.995)}$$

$$K = \frac{5}{1.1}$$

Determine

a) Y(z)/R(z)

[15 marks]

b) y(k) when $r(t) = e^{-2t}$ for $t \ge 0$.

[10 marks]

Figure 1

Question 2

For the system shown in Figure 2

i) determine the break-away or break-in points and the value of gain k at each point

[8 marks]

ii) draw the root locus plot.

[17 marks]

Figure 2

$$G(s) = \frac{K(s^2 + 10s + 24)}{s^2 + 2s}$$

Question 3

For a system with $G(s)H(S) = \frac{500s}{(s+1)(s+50)}$,

a) draw Bode diagrams, and

[22 marks]

b) find the gain cross-over frequency.

[3 marks]

Question 4

a) Consider the single -input, single output system described by

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

where
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ -3 & -2 & 10 - k \end{bmatrix}$$
,

Find the values of K for-which the system is stable.

[13 marks]

c) Obtain a state variable matrix for a system with a differential equation

$$\frac{d^3y(t)}{dt^3} + 2\frac{d^2y(t)}{dt^2} + 10y(t) = 3u(t)$$

Note that u(t) is the input and y(t) is the output.

[12 marks]

Question 5

For of a system whose transfer function is $\frac{Y(s)}{R(s)} = \frac{100}{s^2 + 16s + 100}$ with the input being a unit step.

(a) determine the value of the damping ratio ζ ,	[2 marks]
4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

(g) plot y(t) for
$$0 < t < 1.2$$
. [7 marks]

	f(t)	F(s)	F(z)	f(kt)
1.	u(t)			u(kT)
2.	t			kT
3.	t ⁿ			(kT) ⁿ
4.	e ^{-at}			e ^{-akT}
5.	t ⁿ e ^{-at}			(kT) ⁿ e ^{-akT}
6.	sin(ωt)			sin (ω kT)
7.	cos(ωt)			cos(ωkT)
8.	e ^{-at} sin(ωt)			$e^{-akT}sin(\omega kT)$
9.	e ^{-at} cos(ωt)			$e^{-akT}cos(\omega kT)$
10				$a^k \cos(k\pi)$

z-Transform	Theorems

	Name	Theorem
1.	Linearity theorem	$z\{af(t)\} = aF(z)$
2.	Linearity theorem	$z\{f_1(t)+f_2(t)\}=F_1(z)+F_2(z)$
3.	Complex differentiation	$z\{e^{-at}f(t)\} = F(e^{aT}z)$
4.	Real translation	$z\{f(t-nT)\}=z^{-n}F(z)$
5.	Complex differentiation	
6.	Initial value theorem	If the limit exists
7.	Final value theorem	if the limit exists and the system
	is stable	