UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION 2011

TITLE OF PAPER: ELECTRONIC MATERIALS & DEVICES II

COURSE NUMBER: E 450

TIME ALLOWED: THREE HOURS

INSTRUCTIONS TO CANDIDATES:

USEFUL DATA AND FORMULAE ARE IN THE APPENDIX. *

ANSWER ANY **FOUR** QUESTIONS . ALL QUESTIONS CARRY EQUAL MARKS

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question One.

(a) Define transit time (τ_N) and life time (τ_B) of a charge carrier in the base of a bipolar junction transistor (BJT).
 State why the transit time is generally much less than the life time.

(3 + 1 marks)

- (ii) Calculate the common emitter current gain of a BJT having transit time of 10 μs and life time of 0.1 μs. (2 marks)
- (b) Given below are the Ebers- Moll equations of a bipolar junction transistor.

$$I_{E} = -I_{ES} \left[\exp \left(\frac{V_{EB}}{V_{T}} \right) - 1 \right] + \alpha_{I} I_{CS} \left[\exp \left(\frac{V_{CB}}{V_{T}} \right) - 1 \right]$$

$$I_{C} = -\alpha_{N} I_{ES} \left[\exp \left(\frac{V_{EB}}{V_{T}} \right) - 1 \right] - I_{CS} \left[\exp \left(\frac{V_{CB}}{V_{T}} \right) - 1 \right]$$

- (i) Write down the reciprocity relation in transistors stating what each term represent. (3 marks)
- (ii) Show how the proportionality factor I_{CS} can be expressed in terms of the reverse saturation currents at the collector base junction.

 (6 marks)

 (Hint: Rearrange the Ebers-Moll equation with emitter leads open)
- (c) A p-n-p transistor has $I_{ES} = -2 \mu A$, $I_{CS} = -3 \mu A$ and $\alpha_N = 0.95$. It is connected to a battery with positive to the emitter and negative to the collector. The base is open circuited. Calculate the emitter current.

(10 marks)

(Hint: Modify the E-M equations for a reverse biased C-B junction and let $I_E + I_C = 0$)

Question Two.

- (a) A p-n-p diffusion transistor with abrupt junctions is operating under normal active mode.
 - (i) Draw the biasing arrangement showing the emitter, base and collector currents.

 (3 marks)
 - (ii) Write down the emitter, base and collector currents in terms of the current components due to electron and hole flow across the transistor. (3 marks)
 - (iii) Draw the energy band diagram of the transistor. (3 marks)
- (b) Small signal common base current gain of a p-n-p diffusion transistor is given as:

$$\alpha(\omega) = \frac{\alpha_0}{1 + \frac{j\omega}{\omega_\alpha}}$$
, where symbols have their usual meanings.

- (i) Write down the values of α_o and ω_α in terms of the life time and transit time of the holes in the base. (2 marks)
- (ii) Given that the beta cut off frequency $f_{\beta} = f_{\alpha} (1 \alpha_0)$, show that the common emitter current gain can be expressed as:

$$\beta(\omega) = \frac{\beta_0}{1 + \frac{jf}{f_{\beta}}}$$
 (5 marks)

- (iii) Define current gain band width frequency f_T . (2 marks)
- (iv) Show that $f_T = \alpha_0 f_{\alpha}$ (Take $\beta_0 >> 1$). (3 marks)
- (c) (i) What is meant by maximum frequency f_{max} of a transistor? (2 marks)
 - (ii) A transistor has current gain bandwidth frequency of 408 MHz, collector junction capacitance 3 pF and base resistance 25 Ω . Calculate the maximum frequency f_{max} of the transistor. (2 marks)

Question Three

- (a) (i) Draw a schematic diagram showing the structure and biasing of a Junction Field effect Transistor (JFET). (4marks)
 - (ii) Explain how the channel of a JFET get pinched-off by increasing the drain voltage (no gate voltage applied). (4marks)
- (b) (i) Define drain conductance and transconductance of a JFET. (2 marks)
 - (ii) Show that the drain conductance in the linear region can be expressed as:

$$G_{D} = G_{0} \left[1 - \left(\frac{V_{i} - V_{G}}{V_{P}} \right)^{1/2} \right]$$
given: $I_{D} = G_{0} \left\{ V_{D} - \frac{2}{3} V_{P} \left[\left(\frac{V_{i} - V_{G} + V_{D}}{V_{P}} \right)^{3/2} - \left(\frac{V_{i} - V_{G}}{V_{P}} \right)^{3/2} \right] \right\}$ (10 marks)

(iii) What is threshold voltage V_{th} of a JFET? Show that $V_{th} = V_i - V_p$. (5 marks)

Question Four.

- (a) (i) With the help of a schematic diagram, explain the Float-Zone method in the fabrication of single crystal silicon ingots. (8 marks)
 - (ii) Describe how silicon wafers are prepared for device fabrication from the ingots.

 (4 marks)
 - (iv) What is zone refining? Explain.

(3 marks)

(b) (i) What is epitaxial growth of semiconductors?

(2 marks)

(ii) With the help of a schematic diagram describe the molecular beam epitaxy method for growing doped AlGaAs layers on GaAs.

(8 marks)

Question Five.

- (a) (i) Draw schematic diagram of the four-point probe set up for measurement of resistivity of a semiconductor sample. (3 marks
 - (ii) A 0.2 mm thick semiconductor wafer has diameter of 2.0 cm. It is placed on an insulating plate. Four point probe readings at the centre of the wafer are V= 50 mV and I = 0.5 mA. The spacing between the probes is 0.4 mm. Determine the resistivity and sheet resistance of the wafer. (see appendix C for correction factors).

 (9 marks)
- (b) (i) Draw a labeled schematic diagram of the Haynes-Shockley experimental set up for finding the drift mobility of minority carriers in an n-type semiconductor.

 (5 marks)
 - (ii) The following data were obtained in a Hanes Shockley experiment. at 300 K

Length of the sample = 2.5 cm. Spacing between the emitter and collector = 1.0 cmVoltage applied across the sample = 20 VTime of arrival of the pulse at the collector = $1.5 \text{x} 10^{-4} \text{ s}$

- 1. Calculate the mobility of the minority carriers in the sample.
- 2. Use Einstein's equation to find the diffusion coefficient of the carriers.

(8 marks)

Appendix 1

Various definite integrals.

$$\int_{0}^{\infty} e^{-\alpha x^{2}} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}}$$

$$\int_{0}^{\infty} e^{-\alpha x^{2}} x dx = \frac{1}{2a}$$

$$\int_{0}^{\infty} e^{-\alpha x^{2}} x^{3} dx = \frac{1}{2a^{2}}$$

$$\int_{0}^{\infty} e^{-\alpha x^{2}} x^{2} dx = \frac{1}{4} \sqrt{\frac{\pi}{a^{3}}}$$

$$\int_{0}^{\infty} e^{-\alpha x^{2}} x^{4} dx = \frac{3}{8a^{2}} \left(\frac{\pi}{a}\right)^{1/2}.$$

$$\int_{0}^{\infty} e^{-\alpha x^{2}} x^{5} dx = \frac{1}{a^{3}}$$

$$\int_{0}^{\infty} \frac{x^{3} dx}{e^{x} - 1} = \frac{\pi^{4}}{15}$$

$$\int_{0}^{\infty} x^{1/2} e^{-\lambda x} dx = \frac{\pi^{1/2}}{2\lambda^{3/2}}$$

$$\int_{0}^{\infty} \frac{x^{4} e^{x}}{(e^{x} - 1)^{2}} dx = \frac{4\pi^{4}}{15}$$

$$\int_{0}^{\infty} \frac{x^{1/2}}{e^{x} - 1} dx = \frac{2.61\pi^{1/2}}{2}$$

Appendix 2

Physical Constants.

Quantity	symbol	value
Speed of light	c	$3.00 \times 10^8 \text{ ms}^{-1}$
Plank's constant	h	$6.63 \times 10^{-34} \text{ J.s}$
Boltzmann constant	k	$1.38 \times 10^{-23} \text{ JK}^{-1}$
Electronic charge	e	1.61 x 10 ⁻¹⁹ C
Mass of electron	m_e	9.11 x 10 ⁻³¹ kg
Mass of proton	m_p	$1.67 \times 10^{-27 \text{ kg}}$
Gas constant	R	8.31 J mol ⁻¹ K ⁻¹
Avogadro's number	N_A	6.02×10^{23}
Bohr magneton	$\mu_{\scriptscriptstyle B}$	9.27 x 10 ⁻²⁴ JT ⁻¹
Permeability of free space	$\mu_{ m o}$	$4\pi \times 10^{-7} \text{Hm}^{-1}$
Stefan constant	σ	$5.67 \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$
Atmospheric pressure		$1.01 \times 10^5 \text{Nm}^{-2}$
Mass of 2 ⁴ He atom		$6.65 \times 10^{-27} \text{ kg}$
Mass of 2 ³ He atom		5.11 x 10 ⁻²⁷ kg
Volume of an ideal gas at STP		22.4 l mol ⁻¹