UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE
DEPARTMENT OF ELECTRICAL AND ELECTRONIC
ENGINEERING
MAIN EXAMINATION 2011

TITLE OF PAPER

DIGITAL COMMUNICATIONS

COURSE NUMBER

E530

TIME ALLOWED

THREE HOURS

INSTRUCTIONS

READ EACH CAREFULLY

ANSWER ANY **FOUR** QUESTIONS. EACH QUESTION CARRIES **25 MARKS** MARKS FOR EACH SECTION ARE SHOWN ON THE RIGHT-HAND MARGIN

THIS PAPER HAS SIX PAGES INCLUDING THIS PAGE.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(a) With aid of a neat block diagram explain the PCM transmission system and sketch its input, output and sample wave forms.

[10 marks]

(b) A PCM system with the following parameters,
Maximum analog i/p frequency = 4 kHz
Maximum decoded voltage at the receiver = +/- 2.55v
Maximum dynamic range = 46 dB

Determine:

- · Minimum sample rate
- Minimum number of bits used in the PCM code
- Resolution and
- · Quantization error

[12 marks]

(c) What is meant by coding efficiency?

[3 marks]

- (a) Explain the Delta modulation transmitter with an ideal operation of a delta modulation encoder. [9 marks]
- (b)What is companding?

[2 marks]

(c) Explain the output frequency shift in response to input signal logic in FSK system. Sketch the output spectrum corresponding to input logic.

[10 marks]

(d) Determine the peak frequency deviation and minimum bandwidth for a binary FSK signal with a mark frequency of 49KHz, a space frequency of 51KHz and an input bit rate of 20Kbps.

[4 marks]

(a) Explain the operation of a QPSK transmitter with neat block diagram and construct the truth table, phasor diagram and constellation diagram. Draw the output phase-versus time relationship for a QPSK modulator.

[13 marks]

- (b) For a QPSK modulator with an input data rate (f_b) equal to 10Mbps and a carrier frequency of 70 MHz, determine the minimum double sized Nyquist bandwidth (f_N) and symbol rate. Sketch the output spectrum. [8 marks]
- (c) Explain the relationship between the input data, the XNOR output data and the phase at the output of the balanced modulator in DBPSK transmitter.

[4 marks]

(a) Explain the optimum Filter realization using Matched filter and draw the wave forms for the input signals S_1 (t), S_2 (t), and impulse response of the matched filter P(t) and P(-t), P(T-t) .

[9 marks]

(b) Derive the equation for Probability of error of the Matched filter.

[8 marks]

(c) For an equiprobable binary base band data the optimal receiver receives -5mv for 0 and +5mv for 1, corrupted with white noise of PSD 10⁻⁹ W/Hz. With optimum decision threshold what is the probability of error in reception if data rate is 9600 bits/sec? Find the percentage increase in error rate if data rate is doubled.

[8 marks]

- (a) What is Entropy? Explain how the probabilities of messages depend on average information. [7 marks]
- (b) Define Information rate.

[2 marks]

(c) An analog signal is band limited to B Hz. Sampled at the Nyquist rate and the samples are quantized into 4 levels. The quantization levels Q_1 , Q_2 , Q_3 and Q_4 (messages) are assumed independent and occur with probabilities $P_1=P_4=1/8$ and $P_2=P_3=3/8$. Find the information rate of the source.

[4 marks]

(d) Five source messages occur with probabilities m₁=0.4, m₂=0.15, m₃=0.15, m₃=0.15, m₅=0.15. Find the coding efficiency for (a) Shanon-Fano coding (b) Huffman coding.

[12 marks]