UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION

2010/2011

TITLE OF PAPER:

BASIC ELECTRONICS

COURSE NUMBER:

EE221

TIME ALLOWED:

3 HOURS

INSTRUCTIONS:

ANSWER ANY FOUR OUT OF FIVE QUESTIONS.

EACH QUESTION CARRIES 25 MARKS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN ENCLOSED IN SQUARE BRAKETS.

THIS PAPER HAS 5 PAGES INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

- 1. (a) The simple voltage regulator circuit shown in Fig. 1 of the appendix uses a 6.3 volts Zener diode with a maximum power rating of 300 mW. It is required to hold the voltage across the load substantially constant as the circuit input voltage varies between 10 V and 20 V. Calculate a suitable range of values for the series resistance, R_s to ensure that the Zener diode operates below it's maximum power rating.
 - (b) A half-wave rectifier operating from a 50 Hz supply provides a peak output of 30 V. A load resistance of 20 k Ω is put across the output with a reservoir capacitor in parallel. Calculate the capacitance of the capacitor required if the ripple voltage is to have a peak value of 2 V. [9]
 - (c) An applied AC voltage is given by, $v = v_0 e^{j\omega t}$ where the complex number, $j = e^{j\frac{\pi}{2}}$:
 - (i) Show that in an AC circuit containing pure inductance the current lags behind the applied voltage by $\pi/2$; [4]
 - (ii) Show that in an AC circuit containing pure capacitance the current leads the applied voltage by $\pi/2$. [4]
- 2. (a) Determine the transfer function of a first order low-pass RC filter. [7]
 - (b) Show that the power output is half of the input for a low-pass filter at the cut-off frequency. [6]
 - (c) A first- order RC low-pass filter is to be designed to give a cut-off frequency of 0.5 kHz.
 - (i) What capacitance would be required if the resistance, R is 0.5 k Ω ? [4]
 - (ii) By how much would the output voltage of the filter be attenuated at the cut-off frequency (in decibels)? [4]
 - (iii) What would be the phase difference between the output and input voltages at the cut-off frequency? [4]
- 3. (a) State Thevenin's theorem as applied to a two-terminal network of resistors and sources of emf. [3]
 - (b) In the BJT amplifier in Fig. 2 of the appendix, the value of β for the transistor is 100 and V_{BE} is 0.7 V.
 - (i) Determine the DC Thevenin equivalent circuit for the input bias. [3]
 - (ii) Determine the DC operating point currents, I_B , I_C and I_E . [3]
 - (iii) Determine the DC operating point voltages, V_C , V_E and V_B . Hence show that the npn transistor is forward active. [4]
 - (iv) Convert to an AC-only model and Thevenize the entire circuit. Assume that the

capacitors C_1 , C_2 and C_3 are large.

- [4]
- (v) Replace the transistor with a small signal model and re-draw the circuit. [2]
- (vi) Calculate the gain of the amplifier given that the transconductance $g_m \approx 40 l_C$, the transistor input resistance is $r_\pi = \frac{\beta}{g_m}$ and it's output resistance

$$r_o = 45.2 \text{ k}\Omega. \tag{6}$$

- 4. (a) (i) Sketch the circuit diagram of a logarithmic amplifier which utilizes a pn junction diode. [2]
 - (ii) Show that the output voltage, v_0 of a logarithmic amplifier is related to the input voltage, v_i by:

$$v_o = -2.303\eta V_T \log_{10} \left(\frac{v_i}{I_0 R}\right)$$

where the symbols have their usual meaning.

[6]

- (b) Derive the general feedback equation for an amplifier.
- [4]
- (c) A voltage amplifier has an open-loop gain of -800. If 0.5% of the output voltage is fed back to the input as negative feedback, what will be the percentage change in the gain with feedback when the open-loop gain decreases by 10%, due to changes in device parameters?

 [9]
- (d) A resistor, R and capacitor, C are used the form an op-amp differentiator that gives an output of -5 V for an input rate of change of +10 V/s. The same resistor and capacitor are then used to form an op-amp integrator. Find the expression for the output of the integrator in terms of it's input. [4]
- 5. (a) What logic function, F does the circuit in Fig. 3 of the appendix represent? [6]
 - (b) Reduce the following Boolean functional expression to only two terms:

$$F = A(\overline{AB} + \overline{AB}). \tag{7}$$

(c) Draw a Karnaugh Map in three variables A, B and C for the expression F given as:

$$F = C + A\overline{B}. [4]$$

(d) Use a Karnaugh map to minimize the logic expression for the operation specified by the truth table in Table 1 of the appendix and design a logic circuit to implement it. [8]

APPENDIX - DIAGRAMS

Figure 1

Figure 2

Figure 3

INPUTS			OUTPUTS
Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1.
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Table 1

END OF EE221 EXAMINATION