UNIVERSITY OF SWAZILAND FACULTY OF SCIENCE DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

FIRST SEMESTER EXAMINATION 2011/12

TILE OF THE PAPER: **BASIC ELECTRICAL ENGINEERING** COURSE CODE: **EE251** TIME ALLOWED: **THREE** HOURS

INSTRUCTIONS TO CANDIDATES

- 1. Answer any FOUR (4) questions only.
- 2. Each question carries 25 marks.
- 3. Show the steps clearly in all your calculations.
- 4. State clearly any assumption made.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

This paper contains EIGHT (8) pages including this page

EE251, Page 1 out of 8

- (a) Suppose you have seen the readings of 300 kWh at 6 am in a day in your house's pre-paid energy meter connected to the single-phase supply of 230-V supplied by Swaziland Electricity Company (SEC). Between 6 am and 6 pm in the same day you have used the following appliances
 - ✤ 120-W Freezer with total off-time of 1 hour during the period
 - ✤ 1500-W electric oven for 3 hours
 - ✤ 1200-W electric heater for 5 hours
 - ✤ 450-W washing machine for 1 hour
 - Three tube lights each of 60-W for 2 hours each

Find the following:

- (i) Expected reading of the pre-paid meter at 6 pm in the same day. [4 marks]
- (ii) The input current from the supply if all the appliances are operated simultaneously when overall power factor is 0.85 (lag). [2 marks]
- (iii) Efficiency of your electrical wiring systems of your house if you find that the actual energy consumption during that period is 0.4 kWh more than that of your expectation.
 [2 marks]

(b) For the series-parallel network of the Fig. Q1b, find the following

- (i) The current I_s
- (ii) Find the currents I_2 and I_8
- (iii) Find the current I_7
- (iv) Find the voltage V_{ab}

[6 marks] [2 marks] [3 marks] [3 marks]

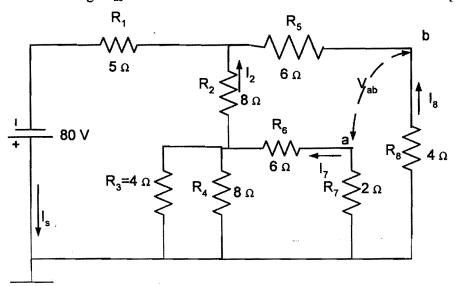
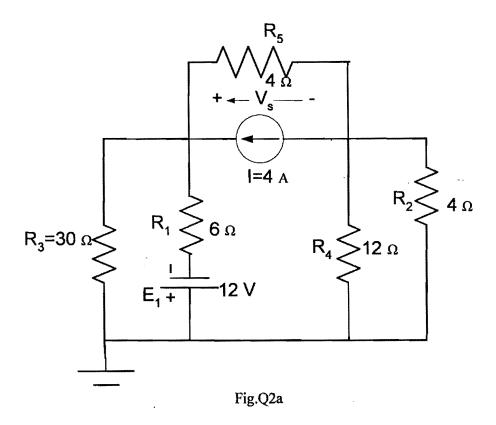


Fig.Q1b


(c) With appropriate diagrams explain the meaning of short and open circuits.

[3 marks]

EE251, Page 2 out of 8

(a) Find the voltage V_s across R_5 as shown in Fig.Q2a through applying superposition theorem.

[15 marks]

(b) Apply mesh analysis to find the mesh currents for the circuit shown in Fig.Q2b. Hence, determine the power dissipated in resistor R₂. [10 marks]

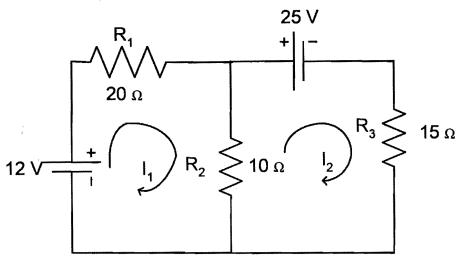
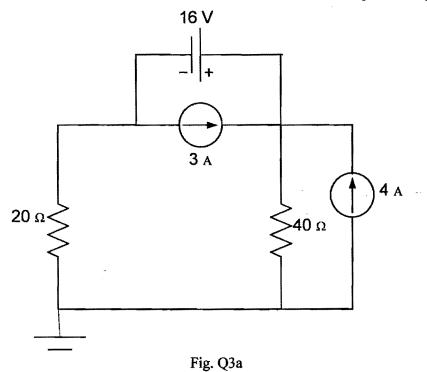
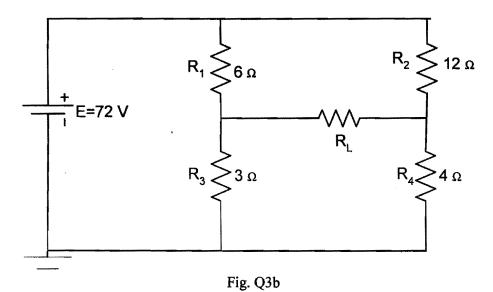



Fig.Q2b


EE251, Page 3 out of 8

(a) Using the supernode approach, determine the nodal voltages for the networks of Fig. Q3a below and hence find the current through the DC source of 16V.

[11 marks]

(b) Find the Thévenin equivalent circuit for the network at the terminals of R_L of the bridge network of Fig. Q3b below. If maximum power is to be transferred to R_L what would be its resistance and how much maximum power will be dissipated by R_L? [10+4 marks]

_

EE251, Page 4 out of 8

(a) Given that in the magnetic circuit shown in Fig.Q4a, area (throughout)= $2 \times 10^{-4} \text{ m}^2$, $l_{ab}=l_{ef}=0.05 \text{ m}$, $l_{af}=l_{be}=0.02 \text{ m}$, $l_{bc}=l_{de}$. B-H curve of sheet steel is given in page 8. For air gap Hg=(7.96 \times 10^5) Bg At/m

(i) Find the current *I* necessary to establish a flux of $\Phi=2.4 \times 10^{-4}$ Wb. [7 marks] (ii). Compare the mmf drop across the air gap to that across the rest of the magnetic circuit. Discuss your results using the value of μ for each material. [4 marks]

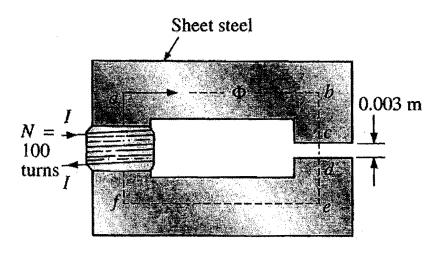


Fig.Q4a

(b) For the circuit shown in Fig.Q4b

(i) Determine the time constant of the circuit .

 (ii) Write the mathematical equation for the voltage v_C following the closing of the switch.
 [2 marks]

 (iii) Determine the voltage v_C after one and five time constants.
 [2 marks]

 (iv) Write the equations for current i_C and voltage v_R.
 [3 marks]

[2 marks]

[3 marks]

- (v) Determine the time at which the voltage across the capacitor will be 15 V
- (vi)Sketch the waveforms for v_C and i_C .

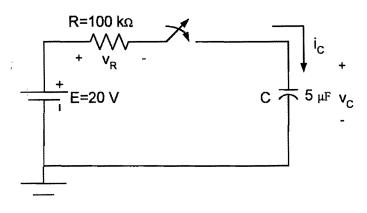


Fig.Q4b

EE251, Page 5 out of 8

(a) Fig. Q5a below shows the waveform displayed on the screen of a oscilloscope. Note that oscilloscope's vertical sensitivity is 10 mV/div and horizontal sensitivity is $10 \mu \text{s/div}$. For this waveform,

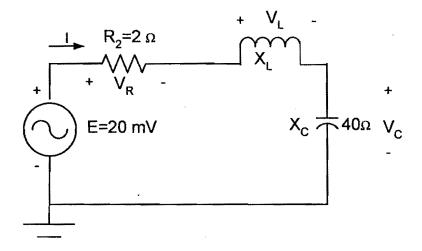
(i) Determine the period.

(ii) Find the frequency.

- (iii) Determine the average value.
- (iv) Determine the rms value.

[2 marks] [2 mark] [4 marks] [4 marks]

111 111) Ini	
			frur.			
	2000 - 2000 2000 - 2000 2000 - 2000 - 2000	224 X 337				


Fig. Q5a

(b) For the circuit shown in Fig.Q5b (next page)

(i) Determine the magnitude of the current *I* at resonance. [1 marks]

- (ii) Find the voltages V_R , V_L , and V_C at resonance, and compare their magnitudes. [4 marks]
- (iii) Determine the quality factor of the circuit. Is it a high or low-Q circuit?
- (iv) If the resonant frequency is 5 kHz, determine the value of L and C.
- (v) Find the bandwidth of the response if the resonant frequency is 5 kHz.
- (vi)What are the low and high cutoff frequencies?[1 marks][2 marks]

EE251, Page 6 out of 8

Fig.Q5b

QUESTION 6

(a) Given that $v(t) = 120\cos(314t + 45^\circ)V$ and $i(t) = 10\cos(314t - 10^\circ)A$ at the terminals of a passive linear network,

(i) Draw the voltage and current waveforms.

[2 marks]

(ii) Mention the types of the network and give reason of your answer. [2 mark]

(iii) Find the instantaneous power, the average power, reactive power and apparent powers absorbed by the network. [4 marks]

(b) For the network shown in Fig. Q6b

(i) Find Z_T and Y_T .[4 marks](ii) Find currents I_1 and I_2 , I_3 and I.[2x4=8 marks](iii) Verify Kirchhoff's current law by showing that[2 marks] $I = I_1 + I_2 + I_3$.[2 marks]

(iv) Use complex conjugate method to calculate power and hence draw the power triangle. [3 marks]

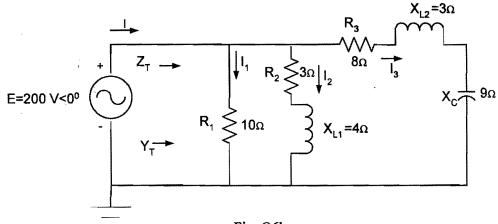
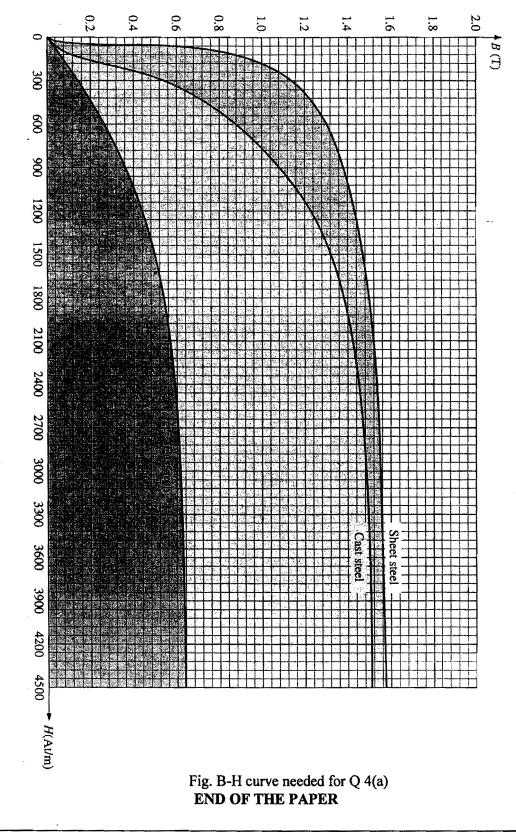



Fig. Q6b

EE251, Page 7 out of 8

EE251, Page 8 out of 8