
UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

PROGRAMMING TECHNIQUES II

COURSE CODE - EE272

SUPPLIMENTARY EXAMINATION

JULY 2012

DURATION OF THE EXAMINATION - 3 HOURS

INSTRUCTIONS TO CANDIDATES

1. 	 There are FIVE questions in this paper. Answer question I, and any other
THREE questions.

2. 	 Each question carries equal marks.

3. 	 Show all your steps clearly in any calculations.

4. 	 State clearly any assumptions made.

5. 	 Start each new question on a fresh page.

Question 1

(a) 	Information hiding is one of the key features that distinguish object-oriented
programming from structured programming. Using an example, explain the rationale of
information hiding and how it relates to the following object-oriented programming
concepts: abstraction, coupling, and cohesion.

[4]

(b) Explain the following Object-Oriented programming terms:
a. 	 Polymorphism [2]
b. 	 Class Constructor [2]
c. 	 Interface [2]

(c) Discuss the ways in which inheritance promotes software reuse, saves time during
program development and helps prevent errors. [4]

(d) Describe the ways by which a derived class may inherit from a base class. [6]

(e) 	Explain the advantage of separating interface from implementation of a class. [2]

(f) 	Explain the difference between local variable and a data member? [1]

(g) 	What is the difference between overriding and redefining a function. [2]

Question 2

Declare a class named Triple with three private data members (floats) x, y, and z. Provide
public functions for setting and getting values of all the private data members. Define a
constructor that initializes the values to user-specified values or, by default, sets the values all
equal to O. Also overload the following operators:

i. Addition (+) so that corresponding elements are added together
ii. 	 Output «<) so that it displays the Triple in the form "The triple is (x,y,z)"
iii. 	 Assignment (=) that copies x to Z, Y to x, and z to y.
IV. 	 Post-increment (++) so that x and z are increased by one each.
v. 	 Input (») such that it is possible to input a Triple in the form:

(x, y, z) e.g. (3,2,5)

[25]

Question 3

(a) Using only recursive functions (NO repetition statements), write a C++ program that
displays the following checkerboard pattern: [15]

2

* * * * * * * * * *

* * * * * * * * * *

* * * * * *

* * * * * *

* * * *

* * * *

* * * * * *

* * * * * *

* * * * * * * * * *

* * * * * * * * * *

Your program must use only three output statements. one (or more) of each of the
following forms:

cout « "* " ,.
cout « " II ,•
cout « endln;

(b) Carefully analyse the program shown in Figure 5 and determine its output. Show all
working. [10]

#include <iostream>

using namespace std;

int main(void) {

int m, ni
int x .. 1, Y = 10i

for(m=x; m<=y; m++)
for(n=x; n<=y; n++) {

if ((m<=x+ 1) I I (m>"y-l))
printf("* ");

else {
«y-n+l>=m-l)&&(y-n+l<=(m+l»)) ? cout«"* ":cout«" ";

cout « endln;

return 0;

Question 4

Create a class HugeInteger that uses a 40-element array of digits to store integers as large as
40 digits each. Provide the following members functions for the class.

(a) Input and Output member functions:

(i) Input: reads the digits of a Hugelnteger object. [3]

(ii) Output: writes out the digits of a HugeInteger object. [1]

(b) Arithmetic member functions:

(i) Add: to calculate the sum of two Hugelnteger objects. [5]

(ii) Subtract: to calculate the difference between two HugeInteger objects.

3

[5]

(c) Member functions for comparing Hugelnteger objects:
(i) 	 isEqualTo: returns TRUE if a Hugelnteger object is greater than or equal to

another Hugelnteger object. Returns FALSE otherwise. [2]

(ii) 	 isNotEqualTo: returns TRUE if a Hugelnteger object is NOT equal to another
Hugelnteger object. Returns FALSE otherwise. [1]

(iii) 	 isGreaterThan: returns TRUE if a Hugelnteger object is greater than another
Hugelnteger object. Returns FALSE otherwise. [2]

(iv) 	 isLessThan: returns TRUE if a Hugelnteger object is less than another
Hugelnteger object. Returns FALSE otherwise. [2]

(v) 	 isGreaterThanOrEqualTo: returns TRUE if a Hugelnteger object is greater
than or equal to another Hugelnteger object. Returns FALSE otherwise.

[1]

(vi) 	 isLessThanOrEqualTo: returns TRUE if a Hugelnteger object is less than or
equal to another Hugelnteger object. Returns FALSE otherwise.

[1]

(vii) 	 isZero: returns TRUE if a Hugelnteger is equal to O. Returns FALSE
otherwise. [2]

Question 5

Create a class called Invoice that a hardware store might use to represent an invoice for an
item sold at the store. An Invoice should include four pieces of information as data
members - a part number (type string), a part name (type string), a quantity of the item being
purchased (type double), a price per item (type double), and a value added tax (VAT) in
percent (type double). Your class should have a constructor that initialises the four data
members. Provide set and get functions for each data member. In addition, provide a member
function named InvoiceAmount that calculates the invoice amount (Le. multiplies the quantity
by the price per item and then add the VAT), then returns the amount as a double value. If the
quantity is not positive it should be set to 0.0. If the price per item is not positive it should be
set to 0.0.

(i) 	 Write an interface and implementation for this class. [20]

(ii) 	 Write a test program that creates two Invoice objects. The first object represent the
purchase of two shovels (part # SHOOI01), each costing E250. The second object
represent the purchase of nine bags of cement (part # CMOlOI2), each costing E65.
Assume that the current VAT set by the government is 14%. Your test program
should print the values ofeach invoice.

[5]

END OF PAPER

4

