University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering

Main Examination 2012

Title of Paper:	Signals and Systems II	
Course Number:	EE332	
Time Allowed:	3 hrs	
Instructions:		
1. Answer any four (4) questions.		
2. E	ach question carries 25 marks.	

3. Useful tables are attached at the end of the question paper

÷

This paper should not be opened until permission has been given by the invigilator.

This paper contains ten (10) pages including this page.

Question 1

J.

(a) Calculate the transfer function, H(z) of the discrete-time system shown in the figure below: [5]

(b) Consider the following continuous-time signal:

$$x(t) = 2A\cos\left(200\pi t + \frac{\pi}{3}\right) + 3A\sin\left(100\pi t - \frac{\pi}{6}\right)$$

Determine the lowest possible sampling frequency, f_s in Hz to sample the signal without aliasing effects. [3]

- (c) Compute the output, y[n] for the following FIR filter with coefficients, $b_k = \{3, -1, 2, 1\}$ and input, x[n] = [2, 4, 6]. [5]
- (d) A causal CT system has the following pole-zero diagram:

Let y(t) = s(t) represent the response of this system to a unit-step signal

$$x(t) = u(t) = \begin{cases} 1, t \ge 0\\ 0, otherwise \end{cases}$$

Assume that the unit-step response s(t) of this system is known to approach 1 as $t \to \infty$. Determine y(t) = s(t). [12]

2

.

Question 2

(a) Solve the following difference equation when the initial conditions are y[0] = 10 and y[1] = 4

$$y[n+2] - \left(\frac{3}{2}\right) y[n+1] + \left(\frac{1}{2}\right) y[n] = \left(\frac{1}{4}\right)^n \text{ for } , n \ge 0.$$
[10]

(b) There are many deaths each year from electric shock. If a person makes a good contact with his hands, the circuit can be represented by the figure below, where $v_s = 160 \cos(\omega t)$ and $\omega = 2\pi f$. Find the steady-state current i(t) flowing through the body when f = 60 Hz.

(c) Plot the spectrum of the voltage signal:

$$v(t) = 2 - 3\cos(4t) + 5\cos(6t + 45^\circ) + \cos(8t - 75^\circ).$$

[5]

Ouestion 3

Consider the circuit below:

where $R_i = 2k\Omega$, $R_F = 100k\Omega$, $C_F = 0.1\mu F$

(a) What kind of filter is this?

[1]

(b) Find the transfer function,
$$H(s) = \frac{V_{out}(s)}{V_{in}(s)}$$
 [9]

(c) Find $V_{out}(t)$ when the input, $V_{in}(t)$ is a step of 0.1V whose Laplace transform is $\frac{0.1}{s}$. [10] (d) Given the following differential equation

$$\frac{d^2 y(t)}{dt^2} + 2\frac{dy(t)}{dt} + 5y(t) = \frac{dx(t)}{dt}$$

(i) Write its characteristic equation.[2](ii) Determine its general solution.[3]

<u>Ouestion 4</u>

(a) Given the following transfer function:

$$H(s) = 10\frac{s+10}{s^2+3s}$$

Construct the Bode plot for the magnitude and phase with respect to the angular frequency, ω , showing all the elements involved in your construction. [20]

5

(b) Identify the region of convergenc, ROC associated with the z-transform for

 $w[n] = \left(\frac{-1}{2}\right)^n u[-n] + 2\left(\frac{1}{4}\right)^n u[-n].$

[5]

Ouestion 5

- (a) If a channel has a bandwidth of 100kHz, how many baseband signals each with a bandwidth of 15kHz could be multiplexed into a single composite signal and transmitted through the channel? [2]
- (b) A signal with the sketched spectrum is sampled ideally with intervals T.

- iii) Is critical sampling possible?
- (c) For a linear system with a unit feedback represented by:

$$G(s) = \frac{4}{s^2 + 2s + 4}$$

Calculate :

÷

(i) Settling time.	[2]
(ii) Maximum overshoot.	[2]
(iii)Peak time.	
(iv) Is this system over-damped, under-damped or critically damped?	

(d) A system is governed by the difference equation:

$$y[n] = -\frac{1}{2}x[n+2] - y[n+1]$$

where x is the input and y is the output. Is the system

(i) Linear?	[1]
(ii) Time invariant?	[2]
(iii)Bounded input bounded output (BIBO) stable?	[2]
(iv)Memoryless?	[2]
(v) Causal?	[2]

(e) For the following closed loop system, calculate the steady-state error to a unit step input. [4]

where
$$G(s) = \frac{0.5(s+11)}{(s+1)^3}$$

÷

Ţ.

Line No. $x(n), n \ge 0$		z-Transform X(z)	Region of Convergence
1	x(n)	$\sum_{n=0}^{\infty} x(n) z^{-n}$	
2	S (n)	I I	2 > 0
3	cu(n)	$\frac{az}{z-1}$	z > 1
4	m(n)	$\frac{z}{(z-1)^2}$	z > 1
5	$n^2 u(n)$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
6	a ⁿ u(n)	$\frac{z}{z-a}$	z > u
7	e ⁻¹⁴ 1(n)	$\frac{z}{(z-e^{-a})}$	z > e^-*
8	na*u(n)	$\frac{az}{(z-a)^2}$	z > a
9	sin(an)u(n)	$\frac{z\sin(a)}{z^2-2z\cos(a)+1}$	= > 1
10	cos(an)u(n)	$\frac{z[z-\cos{(a)}]}{z^2-2z\cos{(a)}+1}$	z > 1
11	$a^n \sin(bn)u(n)$	$\frac{[a\sin(b)]z}{z^2 - [2a\cos(b)]z + a^2}$	z > a
12	$a^n \cos(bn)u(n)$	$\frac{z[z - a\cos(b)]}{z^2 - [2a\cos(b)]z + a^{-2}}$	z > a
13	e ^{an} sin (bn)u(n)	$\frac{[e^{-a}\sin(b)]z}{z^2 - [2e^{-a}\cos(b)]z + e^{-2}}$	$\frac{1}{a}$ $ z > e^{-a}$
14	e ^{-an} cos (bn)u(n)	$\frac{z(z-e^{-a}\cos{(b)})}{z^2-[2e^{-a}\cos{(b)}]z+e^{-2}}$	\overline{a} $ z > e^{-a}$

Table of Z-Transforms

٠

÷

1

$f(t) = {}^{-1} \left\{ F(s) \right\} = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F(s) e^{st} ds$	¢	$F(s) = \mathcal{L} \{f(t)\} = \int_{-\infty}^{+\infty} f(t) e^{-st} dt$
f(t)	£	F(s)
$f(t-a) t \ge a > 0$ $e^{-at}f(t)$ $f(at) a > 0$	$\begin{array}{c} \overset{\mathcal{L}}{\underset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}}}}}{}}}}}}}}}}$	$a^{-as}F(s)$ $F(s+a)$ $\frac{1}{a}F(\frac{s}{a})$
$af_1(t) + bf_2(t) \\ f_1(t)f_2(t) \\ f_1(t) * f_2(t)$	$\begin{array}{c} \overset{\mathcal{L}}{\underset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}}}{\overset{\mathcal{L}}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}}}{\overset{\mathcal{L}}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}}}}{}}}}}}}}}}$	$aF_1(s) + bF_2(s)$ $F_1(s) * F_2(s)$ $F_1(s)F_2(s)$
δ(t) 1 t	$\begin{array}{c} \mathcal{L} \\ \mathcal{L} \\ \mathcal{L} \\ \mathcal{L} \\ \mathcal{L} \end{array}$	$\frac{1}{\frac{1}{s}}$
e^{-at} te^{-at} $1 - e^{-at}$ $\frac{1}{a}e^{-\frac{t}{a}}$ $\frac{1}{a}(1 - e^{-at})$	$ \begin{array}{c} $	$\frac{\frac{1}{s+a}}{\frac{1}{(s+a)^2}}$ $\frac{\frac{a}{s(s+a)}}{\frac{\frac{1}{1+as}}{\frac{1}{s+a}}}$
	$ \begin{array}{c} $	$\frac{\omega}{s^2 + \omega^2}$ $\frac{\omega}{s^2 + \omega^2}$ $\frac{\omega}{s^2 - \omega^2}$ $\frac{\omega}{s^2 - \omega^2}$ $\frac{\omega}{(s+a)^2 + \omega^2}$ $\frac{\omega}{(s+a)^2 + \omega^2}$
t^n $t^n f(t)$	$\stackrel{\mathcal{L}}{\xleftarrow{\mathcal{L}}}$	$rac{n!}{s+n+1} (-1)^n F^{(n)}(s)$
$f'(t) = \frac{d}{dt}f(t)$ $f''(t) = \frac{d^2}{dt^2}f(t)$ In general : $f^{(n)}(t) = \frac{d^n}{dt^n}f(t)$	$\begin{array}{c} \mathcal{L} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \end{array}$	sF(s) - f(0) $s^{2}F(s) - sf(0) - f'(0)$ $s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$\int_0^t f(u) du \\ \frac{1}{t} f(t)$	$\stackrel{\mathcal{L}}{}$	$\frac{\frac{1}{s}F(s)}{\int_{s}^{\infty}F(u)du}$
$f^{-1}(t)$ $f^{-n}(t)$	$\stackrel{\mathcal{L}}{\underset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}{\overset{\mathcal{L}}}{\overset{\mathcal{L}}}}}}{\overset{\mathcal{L}}}}}}}}}}$	$\frac{\frac{F(s)-f^{-1}}{s}}{\frac{F(s)}{s^{n}}+\frac{f^{-1}(0)}{s^{n}}+\frac{f^{-2}(0)}{s^{n-1}}+\ldots+\frac{f^{-n}(0)}{s}}{s}$

ť

F(s)	$f(t) 0 \le t$
1. 1	$\delta(t)$ unit impulse at $t=0$
2. $\frac{1}{s}$	1 or $u(t)$ unit step starting at $t = 0$
3. $\frac{1}{s^2}$	$t \cdot u(t)$ or t ramp function
4. $\frac{1}{s^n}$	$\frac{1}{(n-1)!}t^{n-1} \qquad n = \text{positive integer}$
5. $\frac{1}{s}e^{-as}$	u(t-a) unit step starting at $t=a$
$6. \frac{1}{s}(1-e^{-as})$	u(t)-u(t-a) rectangular pulse
7. $\frac{1}{s+a}$	e^{-at} exponential decay
$8. \frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at} n = \text{positive integer}$
9. $\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-at})$

Properties of Z-Transforms

Linearity: $x_1[k] + x_2[k] \Leftrightarrow X_1(z) + X_2(z)$

Real Scaling: $ax[k] \Leftrightarrow aX(z)$

s'

Complex Scaling: $a^k x[k] \Leftrightarrow X(z/a)$

Time Reversal: $x[-k] \Leftrightarrow X(1/z)$

Summation: $\sum_{n=-\infty}^{k} x[n] \Leftrightarrow \frac{zX(z)}{z-1}$

Initial Value: $x[0] = \lim_{z \to \infty} X(z)$

Final Value: $x[\infty] = \lim_{z \to 1} (z-1)X(z)$

Convolution: $x[k] * h[k] \Leftrightarrow X(z)H(z)$

Differencing: $x[k] - x[k-1] \Leftrightarrow (1 - z^{-1})X(z)$

Differentiation: $-kx[k] \Leftrightarrow z \frac{d}{dz} X(z)$

Time Shifting: $x[n-n_o] \Leftrightarrow z^{-n_o} X(z), n_o \ge 0$

$$x[n+n_o] \Leftrightarrow z^{n_o} \left(X(z) - \sum_{m=0}^{n_0-1} x[m] z^{-m} \right), n_o \ge 0$$