UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION, FIRST SEMESTER DECEMBER 2013

TITLE OF PAPER:	ENGINEERING MECHANICS AND MATERIALS SCIENCE
COURSE CODE:	EE201
TIME ALLOWED:	THREE HOURS

INSTRUCTIONS:

1. Answer any four (4) questions

2. Each question carries 25 marks.

3. Marks for different sections are shown in the right-hand margin.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR

1

This paper has 4 pages including this page.

Question 1

Determine the reactions (R_A and R_B) and the stresses in members AE, ED, and BD of the roof truss shown in Figure 1. (25 marks)

Question 2

- (a) Figure 2 shows a hand cart weighing 800 N, and each axle (pair of wheels) is designed to support a maximum force of 10 kN, determine the largest weight W that may be supported and the position d where it should be placed, assuming both axles are loaded to their capacity.

 (10 marks)
- (b) Draw bending moment diagram for this hand cart when supporting the maximum weight. (15 marks)

Figure 2

Question 3

If the solid cylinder shown in Figure 3 weighs 2kN, its radius r is 60 cm, and its centroidal moment of inertia I_c is 500m.N.sec². It rolls without slipping down the incline. Assume rolling friction to be negligible and g = 9.806 m/s.

a) Draw the free body diagram,

(5 marks)

b) At time t = 2 second and by using impulse-momentum method, calculate the linear acceleration *a* of its center of gravity and friction force F. (20 marks)

Question 4

- a) What are the two types of material property charts, and what the three reasons that makes these tools important? (12 marks)
- b) A boat's propeller shaft transmits 40kW at 120 rev/min.
 - Determine
 - 1) the torque on the shaft
 - 2) the minimum diameter (in centimetres) of a solid circular section shaft, when the maximum permissible shear stress in the shaft is limited to 40MPa, and
 - 3) the resulting angle (in degrees) of twist of this shaft, due to torque, over a length of 1.4m, when the rigidity modulus is 40GPa. (13 marks)

Question 5

Explain how electrical properties of materials are used in designing of electrical power transmission lines. (25 marks)