University of Swaziland Faculty of Science and Engineering Department of Electrical and Electronic Engineering

Main Examination 2014

Title of Paper:	Analogue Design I
Course Number:	EE321
Time Allowed:	3 hrs

Instructions:

1

- 1. Answer all four (4) questions.
- 2. Each question carries 25 marks.
- 3. Where appropriate, $V_{BE} = V_D = 0.7V$, $V_T = 25mV$.
- 4. E12 range: 1.0, 1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2

This paper should not be opened until permission has been given by the invigilator.

This paper contains nine (7) pages including this page.

- a) A particular BJT operating at $I_c = 2mA$ has $C_{\mu} = 1pF$, $C_{\pi} = 10pF$ and $\beta = 150$. Calculate:
 - i) f_T [5]
 - ii) f_{β} [2]
- b) Using an ideal op-amp, design the inverting low-pass amplifier circuit shown in Fig. 1(a) having a pole frequency of 3kHz.
 [7]

Fig. 1(a)

c) What is the main feature of the differential amplifier?

[1]

d) Consider the common base amplifier shown in Fig. 1(b) with $R_L = 10k\Omega$,

 $R_{C} = 10k\Omega$, $V_{CC} = 10V$ and $R_{sig} = 100\Omega$. Note $I = I_{E}$.

- i) To what value must I be set in order that the input resistance is 100Ω ? [5]
- ii) What is the resulting gain from the source to the load? Assume $\alpha = 1$? [5]

iii) In the circuit shown in Fig. 2(a), v_{sig} is a small sine wave signal with zero average. The transistor β is 100. Note: Do not make any assumptions in this question.

Fig. 2(a)

- i) Find the value of R_E to establish a dc emitter current, I_E of about 0.5mA. [5]
- ii) Find R_c to establish a dc collector voltage, V_c of about 5V. [3]
- iii) For $R_L = 10k\Omega$ and the transistor $r_o = 200k\Omega$, draw the small signal equivalent circuit of the amplifier and determine its overall voltage gain, $\frac{v_o}{v_{sig}}$. [10]
- iv) Differentiate between stagger tuning and synchronous tuning, and for each amplifier
 - sketch the corresponding frequency response. [4]
- v) An op-amp has a slew rate of $10V / \mu s$, full-power bandwidth, $\omega_{M} = 2 \times 10^{6} rad / sec$. What is the rated output voltage, v_{omax} ? [3]
- 4

a) Using the topology of Fig. 3(a), design an amplifier to operate between a $10k\Omega$ source and a $2k\Omega$ load with an overall gain of -8V/V. The power supply available is 9V. Use a dc emitter current, I_E of 2mA and a current of about one-tenth of that passes through R1 and R2 in the voltage divider that feeds the base, with the dc voltage, V_{Th} at the base about one-third of the supply. The transistor available has $\beta = 100$ and $V_A = 100V$. Do not make any assumptions. Use standard resistor values. [15]

- b) A parallel circuit has a capacitor of 100 pF in one branch and an inductor of $100 \mu H$ plus a resistance of 10Ω in the second branch. The line voltage is 10V. Find the:
 - i) Resonant frequency, f_0 . [3]
 - ii) Circuit impédance at resonance, Z, . [2]
 - iii) Line current at resonance, *I*. [2]
- c) State 3 advantages of Fixed-Biasing or Base Resistor Biasing [3]

6

a) For the amplifier shown in Fig. 4(a), let $C_{C1} = 1 \mu F$.

- i) Find the break frequency, f_{p1} resulting from C_{C1} .[5]ii) Given that $f_{C2} = 15.55Hz$ and $f_{C_E} = 144.95Hz$. Calculate the overall the 3-dB low
frequency, f_L of the amplifier.[2]
- b) Find an expression for the voltage gain, $\frac{v_{out}}{v_{in}}$ of the circuit in Fig. 4(b). Assume the op-amp is ideal. [4]

c) Consider Fig. 4(c), which shows a capacitor between the input and output terminals.

Using Miller's theorem write equations for the input and output capacitances. [4]

d) The input voltages of an op-amp are $v_2 = 1005 \mu V$ and $v_1 = 995 \mu V$. The op-amp parameters are CMRR = 100 dB and $A_d = 2 \times 10^5$. Determine the:

i)	Differential voltage, v_d .	[1]
ii)	Common-mode voltage, v_c .	[1]
iii)	Common-mode gain, A_c .	[4]
iv)	Output voltage, v_o .	[4]

7