# UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, JULY 2015

### FACULTY OF SCIENCE AND ENGINEERING

## DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

| TITLE OF PAPER: | SIGNALS AND SYSTEMS I |
|-----------------|-----------------------|
| COURSE NUMBER:  | EE331                 |
| TIME ALLOWED:   | THREE HOURS           |

#### **INSTRUCTIONS:**

- 1. There are five questions in this paper. Answer any FOUR questions.
- 2. Each question carries 25 marks.
- 3. Marks for different sections are shown on the right hand margin.
- 4. Show the steps clearly in all your work. This is because marks may be awarded for method and understanding, even if a final answer is incorrect.
- 5. Sheets containing useful tables are attached at the end of the question paper.

THIS PAPER IS NOT TO BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

## THIS PAPER HAS TEN (10) PAGES INCLUDING THIS PAGE

#### QUESTION 1 (25 marks)

(ii)

(a) Find the period of each of the following signals:

(i) 
$$x(t) = e^{j\left(\frac{\pi}{4}t-1\right)}$$
 (3 marks)  
(ii)  $y(t) = 10 + e^{j3t} + e^{-j3t} + e^{j6t} + e^{-j6t}$  (4 marks)

A half-wave rectified sine wave is defined by the expression **(b)** 

$$x(t) = \begin{vmatrix} A\sin(\omega_o t), & 0 \le t \le \frac{T}{2} \\ 0, & \frac{T}{2} \le t \le T \end{vmatrix}$$

Given that the complex Fourier Coefficients  $C_k$  of x(t) are given by

$$C_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_o t}$$

Obtain expressions for the first two Fourier coefficients only, i.e. when k=0 and k=1. You are not asked to get a general expression for all values of k, therefore simplify your integral by concentrating only on these two values of k.

(12 marks)

Three functions  $f_1(t)$ ,  $f_2(t)$  and  $f_3(t)$ , which are zero outside the interval (0,T), are (c) shown in the figure Q1c. By taking a pair of signals at a time, determine whether each pair is orthogonal or not. Note that there will be three pairs of signals. (6 marks)





(4 marks)

### QUESTION 2 (25 marks)

(a) (i) Find expressions for the convolution of the two signals sketched in Fig. Q2a. The convolution should be divided into clearly defined time intervals. (12 marks)



Fig. Q2a

- (ii) Give a sketch of the convolution signal obtained in (i) and find the coordinates of the point where the maximum value of the convolution occurs. (3 marks)
- (b) (i) Define the energy and the power in a signal x(t). (2 marks)
  (ii) Determine the power and energy in each of the following signals:
  i. x(t) = 5e<sup>-3t</sup>, t > 0 (4 marks)
  - ii.  $x(t) = 7\cos(5t + \pi/4)$  (4 marks)

#### QUESTION 3 (25 marks)

(a) Sketch the block diagram for the following impulse response. (5 marks)

$$h(t) = \left[ \left[ h_1(t) * h_2(t) + h_3(t) \right] \right] * h_4(t) + h_5(t)$$

- (b) The classification of signals may be based on how they are represented in time and how their amplitudes are allowed to vary. Using **one cycle of a sinewave** as an example, give clear sketches of how a sine wave may be represented in the following signal sub-classes:
  - (i) Continuous-time and continuous-amplitude (1 mark)
    (ii) Discrete-time and continuous-amplitude (2 marks)
    (iii) Continuous-time and discrete-amplitude (2 marks)
  - (iv) Discrete-time and discrete-amplitude (2 marks)
- (c) Systems can be described by the terms: linear/non-linear, time varying/time invariant, causal/non-causal.
  - (i) Define these three groups of terms as used in the description of systems. (3 marks)
  - (ii) By applying your definitions, derive which alternatives of the above three descriptions apply to the systems represented by the input-output signal relations below: (for example a system might be nonlinear, time invariant and causal)

i. 
$$y(t) = x(t+1)\sin(\omega t+1), \ \omega > 0$$
 (5 marks)

ii. 
$$y[n] = \left(-\frac{1}{2}\right)^n (x[n]+1)$$
 (5 marks)

### QUESTION 4 (25 marks)

(a) Solve the following differential equation using Laplace Transforms. Assume all initial conditions are zero.

$$x''(t) + 4x'(t) + 3x(t) = 4\delta(t)$$
 (10 marks)

(b) Find the initial value and final value of each of the following system responses:

(i) 
$$F(s) = \frac{50}{s(s^2 + 2s + 10)}$$
 (4 marks)

(ii) 
$$F(s) = \frac{(s+1)(s+2)}{(s+3)(s+4)}$$
 (6 marks)

(c) Find and sketch the even and odd components of the signal

$$x(t) = \begin{vmatrix} -t+1, & 0 < t < 2 \\ -t+3, & 2 < t < 3 \\ 0, & t \text{ elsewhere} \end{vmatrix}$$
 (5 marks)



#### QUESTION 5 (25 marks)

- (a) A schematic diagram of a linear circuit shown in Fig.Q5a
  - (i) Find the Laplace domain relation  $\frac{I_1(s)}{I(s)}$ , for the currents i(t) and  $i_1(t)$ , assuming

that all initial current and voltage values are zero.

(ii) Hence, if  $R = 6 \ \Omega$ , L = 2 H and C = 0.25 F, find the response  $i_1(t)$  of the circuit to an impulse  $i(t) = \delta(t)$ . (8 marks)



Fig.Q5a

(b) A signal x(t) is sketched in Fig. Q5b. Sketch the signal given by [x(t)+x(-t)]u(-t).



Fig. Q5b

(8 marks)

(9 marks)

## Table of Laplace Transforms

| delta function<br>shifted delta function<br>unit step<br>ramp<br>parabola             | $\delta(t) \ \delta(t-a) \ u(t) \ tu(t) \ t^2 u(t)$                                            | $ \begin{array}{c}                                     $                                                                                                                                                                                                                              | $\frac{1}{s}$ $\frac{1}{s^2}$ $\frac{2}{s^3}$                                                                     |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| n-th power                                                                            | $t^{\mathbf{n}}$                                                                               | $\stackrel{\mathcal{L}}{\longleftrightarrow}$                                                                                                                                                                                                                                         | $\frac{n!}{s^{n+1}}$                                                                                              |
| exponential decay<br>two-sided exponential decay                                      | $e^{-at}$ $e^{-a t }$ $te^{-at}$ $(t = 0) = at$                                                | $\begin{array}{c} \mathcal{L} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \end{array}$ | $\frac{\frac{1}{s+a}}{\frac{2a}{a^2-s^2}}$ $\frac{1}{(s+a)^2}$                                                    |
| exponential approach                                                                  | $\frac{(1-at)e}{1-e^{-at}}$                                                                    | $\stackrel{\mathcal{L}}{\longleftrightarrow}$                                                                                                                                                                                                                                         | $\frac{\frac{(s+a)^2}{s}}{\frac{a}{s(s+a)}}$                                                                      |
| sine<br>cosine                                                                        | $\sin{(\omega t)} \ \cos{(\omega t)}$                                                          | $\stackrel{\mathcal{L}}{\underset{\mathcal{L}}{\longleftrightarrow}}$                                                                                                                                                                                                                 | $\frac{\omega}{s^2 + \omega^2}$ $\frac{s}{s^2 + \omega^2}$                                                        |
| hyperbolic sine                                                                       | $\sinh(\omega t)$                                                                              | $\stackrel{\mathcal{L}}{\longleftrightarrow}_{\mathcal{L}}$                                                                                                                                                                                                                           | $\frac{\omega}{s^2-\omega^2}$                                                                                     |
| hyperbolic cosine                                                                     | $\cosh(\omega t)$ $e^{-at}\sin(\omega t)$                                                      |                                                                                                                                                                                                                                                                                       | $\frac{s}{s^2 - \omega^2}$                                                                                        |
| exponentially decaying cosin-                                                         | $e e^{-at}\cos(\omega t)$                                                                      | $\stackrel{\mathcal{L}}{\longleftrightarrow}$                                                                                                                                                                                                                                         | $\frac{(s+a)^2+\omega^2}{(s+a)^2+\omega^2}$                                                                       |
| frequency differentiation<br>frequency <i>n</i> -th differentiation                   | $tf(t) \\ t^n f(t)$                                                                            | $\stackrel{\mathcal{L}}{\underset{\mathcal{L}}{\longleftrightarrow}}$                                                                                                                                                                                                                 | -F'(s)<br>$(-1)^n F^{(n)}(s)$                                                                                     |
| time differentiation<br>time 2nd differentiation<br>time <i>n</i> -th differentiation | $f'(t) = \frac{d}{dt}f(t)$ $f''(t) = \frac{d^2}{dt^2}f(t)$ $f^{(n)}(t) = \frac{d^n}{dt^n}f(t)$ | $\begin{array}{c} \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \\ \stackrel{\mathcal{L}}{\longleftrightarrow} \end{array}$                                                                                                              | sF(s) - f(0)<br>$s^{2}F(s) - sf(0) - f'(0)$<br>$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$                   |
| time integration<br>frequency integration                                             | $\int_0^t f(\tau) d\tau = (u * f)(t)$ $\frac{1}{t} f(t)$                                       | $\stackrel{\mathcal{L}}{\longleftrightarrow}$                                                                                                                                                                                                                                         | $rac{1}{s}F(s) \int_{s}^{\infty}F(u)du$                                                                          |
| time inverse<br>time differentiation                                                  | $f^{-1}(t)$ $f^{-n}(t)$                                                                        | $\stackrel{\mathcal{L}}{\longleftrightarrow}$                                                                                                                                                                                                                                         | $\frac{F(s)-f^{-1}}{\frac{F(s)}{s^n}+\frac{f^{-1}(0)}{s^n}+\frac{f^{-2}(0)}{s^{n-1}}+\ldots+\frac{f^{-n}(0)}{s}}$ |

ي ، ، س

## PROPERTIES OF LAPLACE TRANSFORMS

i) Time-shift (delay): 
$$f(t-t_0) \xleftarrow{L} F(s)e^{-st_0}, t_0 > 0$$
  
ii) Time differentiation:  $\frac{df(t)}{dt} \xleftarrow{L} sF(s) - f(0)$   
iii) Time integration:  $\int_0^t f(t)dt \xleftarrow{L} F(s) s sF(s) - f(0)$   
iv) Linearity:  $af(t) + bg(t) \xleftarrow{L} aF(s) + bF(s)$   
v) Convolution Integral:  $x(t) * h(t) \xleftarrow{L} x(s)H(s)$   
vi) Frequency-shift:  $e^{\alpha t} f(t) \xleftarrow{L} F(s-\alpha s)$   
vii) Multiplying by  $t$ :  $tf(t) \xleftarrow{L} F(s-\alpha s)$   
viii) Scaling:  $f(at) \xleftarrow{L} \frac{1}{a} F\left(\frac{s}{a}\right), a > 0$   
ix) Initial Value Theorem:  $\lim_{s \to 0} \{sF(s)\} = f(0)$   
x) Final Value Theorem:  $\lim_{s \to 0} \{sF(s)\} = f(\infty)$ 

•

| #  | Time Domain: x(t)                               | Frequency Domain: X(jω)                                                                   |
|----|-------------------------------------------------|-------------------------------------------------------------------------------------------|
| 1  | $\delta(t)$                                     | 1                                                                                         |
| 2  | 1                                               | $2\pi\delta(\omega)$                                                                      |
| 3  | $\delta(t-t_d)$                                 | $e^{-j\omega t_d}$                                                                        |
| 4  | e <sup>jω₀t</sup>                               | $2\pi\delta(\omega-\omega_o)$                                                             |
| 5  | $e^{-at}u(t), \ (a>0)$                          | $\frac{1}{a+j\omega}$                                                                     |
| 6  | $e^{bt}u(-t), \ (b>0)$                          | $\frac{1}{b-j\omega}$                                                                     |
| 7  | <i>u</i> ( <i>t</i> )                           | $\pi\delta(\omega) + \frac{1}{j\omega}$                                                   |
| 8  | $u(t+\frac{1}{2}T)-u(t-\frac{1}{2}T)$           | $\frac{\sin(\omega T/2)}{\omega/2}$                                                       |
| 9  | $\frac{\sin(\omega_b t)}{\pi t}$                | $u(\omega + \omega_b) - u(\omega - \omega_b)$                                             |
| 10 | $A\cos(\omega_o t + \phi)$                      | $\pi A e^{j\phi} \delta(\omega - \omega_o) + \pi A e^{-j\phi} \delta(\omega + \omega_o).$ |
| 11 | $\cos(\omega_o t)$                              | $\pi\delta(\omega-\omega_o)+\pi\delta(\omega+\omega_o)$                                   |
| 12 | $sin(\omega_o t)$                               | $-j\pi\delta(\omega-\omega_o)+j\pi\delta(\omega+\omega_o)$                                |
| 13 | $\sum_{k=-\infty}^{\infty}a_k e^{jk\omega_o t}$ | $\sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - k\omega_o)$                           |
| 14 | $\sum_{k=-\infty}^{\infty} \delta(t-nT)$        | $\frac{2\pi}{T}\sum_{k=-\infty}^{\infty}\delta(\omega-\frac{2\pi}{T}k)$                   |

## TABLE OF BASIC FOURIER TRANSFORM PAIRS

ι

# TABLE OF BASIC FOURIER TRANSFORM PROPERTIES

| #  | PROPERTY NAME   | TIME DOMAIN: x(t)       | FREQUENCY DOMAIN: X(jω)                                               |
|----|-----------------|-------------------------|-----------------------------------------------------------------------|
| 1  | Linearity       | $ax_1(t) + bx_2(t)$     | $aX_1(j\omega) + bX_2(j\omega)$                                       |
| 2  | Conjugation     | $x^*(t)$                | $X^*(-j\omega)$                                                       |
| 3  | Time-Reversal   | x(-t)                   | $X(-j\omega)$                                                         |
| 4  | Time Scaling    | x(at)                   | $\frac{1}{ a }X(j\frac{\omega}{a})$                                   |
| 5  | Time Delay      | $x(t-t_d)$              | $e^{-j\omega t_d}X(j\omega)$                                          |
| 6  | Modulation      | $x(t)e^{j\omega_o t}$   | $X[j(\omega-\omega_o)]$                                               |
| 7  | Modulation      | $x(t)\cos(\omega_o t)$  | $\frac{1}{2}X[j(\omega-\omega_o)] + \frac{1}{2}X[j(\omega+\omega_o)]$ |
| 8  | Differentiation | $\frac{d^n x(t)}{dt^n}$ | $(j\omega)^n X(j\omega)$                                              |
| 9  | Convolution     | x(t) * h(t)             | $X(j\omega)H(j\omega)$                                                |
| 10 | Multiplication  | x(t)y(t)                | $\frac{1}{2\pi}X(j\omega)*Y(j\omega)$                                 |