UNIVERSITY OF SWAZILAND MAIN EXAMINATION, SECOND SEMESTER MAY 2015

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS

COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

· ----

- 1. There are five questions in this paper. Answer any FOUR questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.
- 3. You may find some useful data attached at the end of the paper.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (6) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

(a) (i) Describe the memory areas available and their use in a typical microcontroller.

(3 marks)

(ii) What is the architecture used in PIC16F84A device? State why this architecture is more faster.

(3 marks)

(iii) Identify the main features of RISC type microcontrollers.

(2 marks)

(iv) Differentiate between a typical microprocessor system and a microcontroller system.

(2 marks)

(b) A segment of a program using PIC16F84A is given in Figure-Q1.

option_re	eg equ 01h
bsf	status,5
movlw	b'10000010'
movwf	option_reg
bcf	status,5

Figure-Q1

(i) Explain all the statements shown in Figure-Q1.

(5 marks)

(ii) It is required to have the timer TMR0 to overflow in each 10ms in a certain application. Crystal oscillators available are 1MHz, 2.0MHz, 2.457MHz, 3.277MHz and 3.579MHz. Recommend a suitable crystal justifying your answer and show the percentage timing error if any. Modify the assembly instructions in Figure-Q1 to accommodate your selection.


(8 marks)

(iii) Draw a circuit diagram to show how you will connect the crystal oscillator to the microcontroller.

(2 marks)

QUESTION TWO (25 marks)

(a) A 3×4 key pad shown in Figure-Q2(a) is required to be connected to PIC16F84A microcontroller using its PortB.

Figure-Q2(b)

The keys '#' and '*' may have the decimal values of 10 and 11 respectively. A subroutine 'scan' finds the key pressed and store the binary value corresponding to the key in the register 'keycode'.

(i) Draw a diagram to show the interconnections between the keypad and the microcontroller. Indicate whether the port pins are inputs or outputs.

(3 marks)

(ii) Draw a labeled flow chart segment to show how a pressed key in column C1 is found and to store the value of the key in 'keycode'.

(5 marks)

- (iii) Write the assembly code which will determine the scanning of key'1' and key'4' based on your flow chart in (ii) above. You may neglect the de-bounce effects. (5 marks)
- (b) A subroutine written to provide a delay is shown in Figure-Q2(b). It is a part of a program which runs in a 16F84A microcontroller clocked with a 8MHz crystal. (i)
 - Find the delay time produced by this subroutine.

(8 marks)

(ii) It is required to obtain a delay as close as $300\mu s$. Show how you can achieve it by changing only a single instruction. What is the percentage timing error?

(4 marks)

QUESTION THREE (25 marks)

Signal

A house heating system is designed based on a 16F84A microcontroller powered with 5V. A single boiler is used to heat the upstairs and downstairs, but are equipped with independently controlled flow pumps. Following system components are used and they accepts TTL compatible signals.

Description

-	-
T _B	Boiler water temperature sensor output. Returns logic '1' if the
	temperature is above the set limit.
T_U and T_D	Outputs of the upstairs and down stairs temperature sensors. Returns
	logic '0' if the temperature is less than the set value.
P_U and P_D	Control signals of the upstairs and downstairs flow pumps. Logic '1'
	applied to a control signal operates the pump.
Н	Control signal of the boiler heater. Logic '1' applied to the control
	signal turns on the boiler heater.

(i) Draw a circuit diagram for this system showing all signal interconnections with the pin numbers of the microcontroller. You may omit the components required for the clock oscillator. Sensors and the controlled components can be shown as blocks.

(5 marks)

(ii) Suggest the control logic that you are going to implement by the microcontroller program.

(7 marks)

(iii) Draw a flowchart for the microcontroller program based on (ii) above.

(9 marks)

(iv) Using assembly instructions show how you are going to configure the ports as required.

(4 marks)

QUESTION FOUR (25 marks)

- (a) A control system is implemented using a 16F84A microcontroller program.
 - (i) The value of INTCON register at the initialization is A8h. Explain what you can understand by this setup.

(2 marks)

(ii) While running the program, the INTCON register showed a value of 29h at some point. Interpret the information described by the INTCON register.

(2 marks)

(iii) When an interrupt occurs, state the events that will take place in the program counter, stack memory and GIE bit. Indicate the essential features to be included in an interrupt service routine.

(6 marks)

(iv) The program uses TMR0 timer to generate a regular interrupt in every 1ms. Show the settings needed in relevant registers to achieve this supported with relevant calculations. What is the value of INTCON register just after such an interrupt? Assume that the system uses a 2MHz crystal oscillator.

(6 marks)

- (b) An application uses a PIC 16F877 microcontroller with a 10MHz crystal oscillator.
 - (i) It is required to use the Analog to Digital Converter (ADC) of the device with an external voltage reference and five analog input channels. Show the settings of the relevant registers with justification if the input channel 4 is selected and the ADC is turned on but not started to convert. You may assume that the ADC output is left justified.

(6 marks)

(ii) The ADC minimum acquisition time is about 20µs. State the relevance of this value and indicate how it is incorporated in a program.

(3 marks)

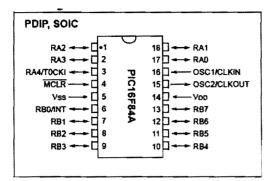
Page 5 of 6

QUESTION FIVE (25 marks)

- (a) A serial device which supports SPI is required to be connected to the Synchronous Serial Port of a PIC 16F877 microcontroller.
 - (i) Draw a circuit diagram to show the interconnections of the device and the microcontroller. You may consider the device pins such as DIN (data in), DOUT (data out), SCLK (serial clock) and \overline{CS} (chip select). Mark <u>only</u> the relevant pin numbers of the microcontroller used for the interconnection.

(6 marks)

(ii) State briefly how the data is transferred between the device and the microcontroller using SPI mode.


(9 marks)

(b) The serial device has a maximum data rate of 200kHz and the microcontroller is running on a 10MHz crystal oscillator.

Show the settings of the SSPCON, SSPSTAT and any other register involved to establish SPI mode of operation, giving justifications where necessary. Among other typical settings, you may include the settings for, the high idle state of clock, data sampling at the middle of the bit period and the data transfers are on the falling edge of the clock.

(10 marks)

PIC 16F84A

File Addre	ss		ile Address
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	60h
01h	TMRO	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h		-	87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
OAn	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
OCh	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank O	8Ch
4Fh 50h			CFh D0h

STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Unimplemented: Maintain as '0'

RP0: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

PD: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

C: Carry/Dorrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

16F84A and 16F877

Mnemonic, Desci Operands Desci		Deserintion	Cycles	14-Bit Opcode				Status	
		Description	Cycles	MSD			LSb	Affected	Notes
		BYTE-ORIENTED FILE F	REGISTER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	tttt	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	afff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	1111	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	1111	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	z	1,2
DECFSZ	f, đ	Decrement f, Skip If 0	1 (2)	00	1011	diii	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1 (2)	00	1111	dfff	tttt		1,2,3
IORWF	f, d	Inclusive OR W with 1	1	00	0160	dete	tttt	z	1,2
MOVE	f, d	Movel	1	00	1000	dfff	ffff	z	1,2
MOVWF	1	Move W to f	1	00	0000	lfff	1111		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, đ	Rotate Left through Carry	1	00	1101	dfff	tttt	C	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	1111	C.DC.Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	z	1,2
		BIT-ORIENTED FILE R	EGISTER OPER	RATIO	15				
BCF	f, b	Bit Clear f	1	01	00bb	,bfff	tttt		1,2
BSF	f, b	Bit Set f	1	01	0166	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	1066	biii	1111		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CON	TROL OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	ĸ	Call subroutine	2	10	Okkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	1
MOVLW	ĸ	Move literal to W	1	11	00000	kkkk	kkkk	l	
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		1
RETLW	k	Return with literal in W	2	11	01xx	kk kk	kk kk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from Interal	1	11	110x	kkkk	k kkk	C,DC,Z	
XORLW	ĸ	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	z	1

Note 1: When an I/O register is modified as a function of itself (e.g., MOVE PORTE, 1), the value used will be that value present on the pins themselves. For example, if the data tatch is "1' for a pin configured as input and is driven low by an external device, the data will be written back with a "0".

 If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC 16F877

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ã	Р	S	R∕₩	UA	BF
bit 7							bit 0

SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

In 1²C Master or Slave mode:

1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)

0 = Slew rate control enabled for high speed mode (400 kHz)

CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)

SPI mode:

For CKP = 0

1 = Data transmitted on rising edge of SCK

0 = Data transmitted on falling edge of SCK

For CKP = 1

1 = Data transmitted on falling edge of SCK

0 = Data transmitted on rising edge of SCK

In I²C Master or Slave mode:

1 = Input levels conform to SMBus spec

0 = Input levels conform to I²C specs

D/A: Data/Address bit (I²C mode only)

1 = Indicates that the last byte received or transmitted was data

0 = Indicates that the last byte received or transmitted was address

P: STOP bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)

0 = STOP bit was not detected last

S: START bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)

0 = START bit was not detected last

R/W: Read/Write bit Information (I²C mode only)

This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit.

In I²C Slave mode:

1 = Read

0 = Write

In I²C Master mode:

1 = Transmit is in progress

0 = Transmit is not in progress

Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.

UA: Update Address (10-bit I²C mode only)

1 = Indicates that the user needs to update the address in the SSPADD register

0 = Address does not need to be updated

BF: Buffer Full Status bit

Receive (SPI and I²C modes):

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

Transmit (I²C mode only):

1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full

0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

Data Page 5 of 9

PIC 16F877

PIC16F877/876 REGISTER FILE MAP

۲

,	File Address		File Address		File Address		File Address
Indirect addr.(*)	00h	Indirect addr.(")	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMRO	01h	OPTION REG	81h	TMRD	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18Eh
TMR1H	OFh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General	117h	General	197h
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ab
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh		9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		AOh		120h		1A0h
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFh
	7Fh	accesses 70h-7Fh	FOh	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1F0h 1FFh
Bank 0		Bank 1		Bank 2	1760	Bank 3	12,2,0

Unimplemented data memory locations, read as '0'.
* Not a physical register.

Note 1: These registers are not implemented on the PIC16F876.2: These registers are reserved, maintain these registers clear.

PIC 16F877

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	—		PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

Unimplemented: Read as '0'

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	A	A	A	Α	A	A	A	A	VDO	Vss	8/0
0001	A	A	Α	Α	VREF+	Α	A	Α	RA3	Vss	7/1
0010	D	D	D	Α	А	A	Α	Α	VDD	Vss	5/0
0011	D	D	D	A	VREF+	A	Α	A	RA3	Vss	4/1
0100	D	D	D	D	A	D	Α	Α	VDO	Vss	3/0
0101	D	D	D	D	VREF+	D	A	A	RA3	Vss	2/1
011x	D	D	D	Ð	D	D	D	D	VDD	Vss	0/0
1000	A	A	Α	A	VREF+	VREF-	Α	A	RA3	RA2	6/2
1001	D	D	Α	Α	A	A	A	A	VDD	Vss	6/0
1010	D	D	A	A	VREF+	Α	Α	Α	RA3	Vss	5/1
1011	D	D	A	A	VREF+	VREF-	A	A	RA3	RA2	4/2
1100	D	D	D	A	VREF+	VREF-	A	Α	RA3	RA2	3/2
1101	D	0	D	D	VREF+	VREF-	A	A	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	A	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown