University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2015

:	Introduction to Digital Signal Processing		Introduction to Digital Signal Processing	
:	EE443			
:	3 hrs			
:				
1.	Answer any four (4) questions			
2.	Each question carries 25 marks			
3.	Useful information is attached at the end of the question paper			
	: : : 1. 2. 3.	 Introduction to Digital Signal Processing EE443 3 hrs 1. Answer any four (4) questions 2. Each question carries 25 marks 3. Useful information is attached at the end of the question paper 		

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of seven (7) pages

Question 1

(a) A processor is described by the linear difference equation

$$y[n] = x[n] + 4x[n-2]$$

Find the transfer function of the processor and hence write down the unit sample response sequence of the processor. [6]

- (b) A unit-step function u(t) is sampled every T seconds. Find the z-transform of the resulting sample sequence, assuming that the value of the unit step at time t = 0 is 1. What is the z-transform of the sampled unit step delayed by T seconds? [4]
- (c) A voltage signal is modelled as the sinusoid

$$v(t) = 5\cos(3t + 0.5)$$

Express the signal in terms of the exponential frequency components and sketch the frequency-domain representation of the signal. [6]

- (d) List any two (2) digital signal processing applications. [2]
- (e) Find the z-transform of the following:
 - (i) x(n) = 10 u(n) [2]
 - (ii) $x(n) = (0.5)^n \sin(0.25\pi n) u(n)$ [5]

Question 2

(a) Given two sequences

$$x_1(n) = 5\delta(n) - 2\delta(n-2)$$
 and
 $x_2(n) = 3\delta(n-3)$,

- (i) Determine the z-transform of convolution of the two sequences using the convolution property of z-transform. [4]
- (ii) Determine the convolution by the inverse z-transform from the result in (i). [4]

(b) Find the inverse of the following functions:

(i)
$$X(z) = 4 - \frac{10z}{z-1} - \frac{z}{z+0.5}$$
 [3]
(ii) $X(z) = \frac{-5z}{z-1} + \frac{10z}{(z-1)^2} + \frac{2z}{(z-0.8)^2}$ [3]

(c) Convert the following transfer function into its difference equation.

$$H(z) = \frac{z^2 - 1}{z^2 + 1.3z + 0.36}$$
[6]

(d) Draw the functional block of the digital signal processing scheme and state the function of the last block in the diagram. [5]

Question 3

(a) Given the following difference equation,

$$y(n) = 0.5 x(n) + 0.5 x(n-1)$$

- (i) Find H(z)
- (ii) Determine the impulse response y(n) if the input is $x(n) = 4\delta(n)$; [3]

[2]

(b) Given the filter

$$H(z) = \frac{1 - 0.9z^{-1} - 0.1z^{-2}}{1 + 0.3z^{-1} - 0.04z^{-2}},$$

Realize H(z) and develop the difference equation using the following form

(i)	Direct-form I	[5]
(ii)	Direct-form II	[5]
(iii)	Cascade (series) form via first order-sections	[5]
(iv)	Parallel form via first oder-sections	[5]

Question 4

- (a) Design a 5-tap FIR band reject filter with a lower cut-off frequency of 2 kHz, and an upper cut-off frequency of 2.4 kHz, and a sampling rate of 8 kHz using the Hamming window method. Then, determine the transfer function. [18]
- (b) Design a bandpass FIR filter with the following specifications: [7]

Lower stopband = 0 - 500 Hz Passband = 1600 - 2300 Hz Upper stopband = 3500 - 4000Hz Stopband attenuation = 50 dB Passband ripple = 0.05 dB

Sampling rate = 8000 Hz

Simply show the first five (5) FIR coefficients using the Hamming window.

Question 5

(a) Design a digital lowpass Butterworth filter with the following specifications: [20]

- 3 dB attenuation at the passband frequency of 1.5 kHz
- 10 dB stopband attenuation at the frequency of 3 kHz
- Sampling frequency of 8000 Hz

(b) A digital system is described by the following difference equation:

$$y(n) = x(n) - 0.25 x(n-2) - 1.1y(n-1) - 0.28y(n-2)$$

Find the transfer function H(z), the denominator polynomial A(z) and the numerator polynomial B(z). [5]

Table 1: Properties of z-transform

Property	Time Domain	z-Transform	
Linearity Shift theorem Linear convolution	$ax_1(n) + bx_2(n) x(n-m) x_1(n) * x_2(n) = \sum_{k=0}^{\infty} x_1(n-k) x_2(k)$	$aZ(x_1(n)) + bZ(x_2(n)) z^{-m}X(z) X_1(z)X_2(z)$	

Table 2: Partial fraction(s) and formulas for constant(s).

Partial fraction with the first-order real pole:	
$\frac{R}{z-p}$	$R = (z - p) \frac{X(z)}{z} \bigg _{z = p}$
Partial fraction with the first-order complex po	bles:
$\frac{Az}{(z-P)} + \frac{A^*z}{(z-P^*)}$	$A = (z - P) \frac{X(z)}{z} \bigg _{z = P}$
$P^* = \text{complex conjugate of } P$	
$A^* = $ complex conjugate of A	
Partial fraction with mth-order real poles:	
$\frac{R_m}{(z-p)} + \frac{R_{m-1}}{(z-p)^2} + \dots + \frac{R_1}{(z-p)^m}$	$R_{k} = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left((z-p)^{m} \frac{X(z)}{z} \right) \Big _{z=p}$

Table 3: Summary	of ideal	impulse	r esponses	for standard	FIR filters.
------------------	----------	---------	------------	--------------	--------------

Ideal Impulse Response h(n) (noncausal FIR coefficients)
$h(n) = \begin{cases} \frac{\Omega_{\star}}{\pi} & n = 0\\ \frac{\sin(\Omega_{\star}n)}{n\pi} \text{ for } n \neq 0 & -M \le n \le M \end{cases}$
$h(n) = \begin{cases} \frac{\pi - \Omega_c}{\pi} & n = 0\\ -\frac{\sin(\Omega_c n)}{n\pi} \text{ for } n \neq 0 & -M \le n \le M \end{cases}$
$h(n) = \begin{cases} \frac{\Omega_H - \Omega_L}{\pi} & n = 0\\ \frac{\sin(\Omega_H n)}{n\pi} - \frac{\sin(\Omega_L n)}{n\pi} & \text{for } n \neq 0 & -M \le n \le M \end{cases}$
$h(n) = \begin{cases} \frac{\pi - \Omega_H + \Omega_L}{\pi} & n = 0\\ -\frac{\sin(\Omega_H n)}{n\pi} + \frac{\sin(\Omega_L n)}{n\pi} & \text{for } n \neq 0 & -M \le n \le M \end{cases}$

Causal FIR filter coefficients: shifting h(n) to the right by M samples. Transfer function:

 $H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_{2M} z^{-2M}$ where $b_n = h(n - M), n = 0, 1, \dots, 2M$

Line No.	<i>x</i> (<i>n</i>), <i>n</i> ≥0	z-Transform $X(z)$	Region of Convergence
1	x(n)	$\sum_{n=0}^{\infty} x(n) z^{-n}$	
2	δ(n)	1	z > 0
3	au(n)	$\frac{az}{z-1}$	z > 1
4	ma(n)	$\frac{z}{(z-1)^2}$	2 > 1
5	$n^2u(n)$	$\frac{z(z+1)}{(z-1)^3}$	is > 1
6	a ⁿ u(n)	$\frac{z}{z-a}$	z > a
7	$e^{-na}u(n)$	$\frac{z}{(z-e^{-a})}$	z > e^-
8	$nd^{n}u(n)$	$\frac{az}{(z-a)^2}$	z > a
9	$\sin(an)u(n)$	$\frac{z\sin{(a)}}{z^2-2z\cos{(a)}+1}$	z > 1
10	$\cos(an)u(n)$	$\frac{z[z-\cos{(a)}]}{z^2-2z\cos{(a)}+1}$	2 > 1
11	$a^n \sin(bn)u(n)$	$\frac{[a\sin(b)]z}{z^2 - [2a\cos(b)]z + a^2}$	z > d
12	$a^n \cos(bn) u(n)$	$\frac{z[z - a\cos(b)]}{z^2 - [2a\cos(b)]z + a^{-2}}$	z > a
13	$e^{-an}\sin(bn)u(n)$	$\frac{[e^{-a}\sin(b)]z}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z > e^{-a}$
14	$e^{-an}\cos(bn)u(n)$	$\frac{z[z - e^{-a}\cos(b)]}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z > e^{-\sigma}$
15	$2 A P ^n \cos(n\theta + \phi)u(n)$ where P and A are complex constants defined by $P = P \angle \theta, A = A \angle \theta$	$\frac{Az}{z-P} + \frac{A^*z}{z-P^*}$	

Table 4: The Z-transform

٠

• •

.

 Table 5: Conversion from analog filter specifications to lowpass prototype specifications.

1

Analog Filter Specifications	Lowpass Prototype Specifications
Lowpass: ω_{ap}, ω_{as}	$v_p = 1, v_s = \omega_{as}/\omega_{ap}$
Highpass: ω_{ap}, ω_{as}	$v_{\rho} = 1, v_s = \omega_{ap}/\omega_{as}$
Bandpass: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ash}	$v_p = 1, v_s = \frac{\omega_{ab} - \omega_{ab}}{\omega_{ab} - \omega_{ab}}$
$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \ \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$	- 201
Bandstop: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ush}	$v_p = 1, v_s = \frac{\omega_{aph} - \omega_{apl}}{\omega_{aph} - \omega_{apl}}$
$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$	·· 11.973 ·· 16.9

 ω_{ap} , passband frequency edge; ω_{as} , stopband frequency edge; ω_{apl} , lower cutoff frequency in passband; ω_{aph} , upper cutoff frequency in passband; ω_{ash} , lower cutoff frequency in stopband; ω_{ash} , upper cutoff frequency in stopband; ω_o , geometric center frequency.

p