UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION:	2015
TITLE OF PAPER:	BASIC ELECTRICAL ENGINEERING
COURSE NUMBER:	EE251 *
TIME ALLOWED:	3 HOURS

INSTRUCTIONS:

ANSWER ALL FIVE (5) QUESTIONS.

MARKS FOR DIFFERENT SECTIONS ARE SHOWN ENCLOSED IN SQUARE BRACKETS.

THIS PAPER HAS FOUR (4) PAGES INCLUDING THIS PAGE.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1 (20 marks)

In the circuit of Figure 1,

- (a) Find the current i_o using nodal analysis. (b) Find the current i_o using mesh analysis.

[10] [10]

Question 2 (17 marks)

In the circuit of Figure 2,

(a) Find R so that maximum power is transferred to the resistance R.	[15]
(b) Find this maximum power.	[2]

Question 3 (20 marks)

Use <u>superposition</u> to find the current i_0 in the circuit in Figure 3.

Question 4 (18 marks)

For the circuit in Figure 4, find Vs.

Question 5 (25 marks)

For the unbalanced circuit in the Figure 5, find:

- (a) the line currents,
- (b) the total complex power absorbed by the load, and
- (c) the total complex power supplied by the source.

[15]

[5]

[5]