Faculty of Science Department of Electrical and Electronic Engineering Main Examination 2015

Title of Paper

Signals and Systems I

University of Swaziland

Course Number:

EE331

Time Allowed

3 hrs

Instructions

1. Answer all four (4) questions

2. Each question carries 25 marks

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of five (7) pages including the cover page

Question 1 [25]

a) Define the following terms:

i. Signal	[2]
ii. System	[2]
iii. Deterministic signal	[2]

- iv. Random signal [2]
- b) For any arbitrary signal x(t), which is an even signal, show that: [8] $\int_{-\infty}^{\infty} x(t)dt = 2 \int_{-\infty}^{\infty} x(t)dt$
- c) Using figure 1.1, write the mathematical expression of:

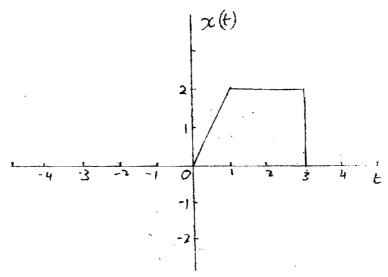


Figure 1.1

Question 2 [25]

a) A continuous-time signal X (t) is shown in figure 2.1, sketch and label each of the following signals.

i. $x\left(4-\frac{t}{2}\right)$ [3]

ii. [x(t) + x(-t)]u(t) [4]

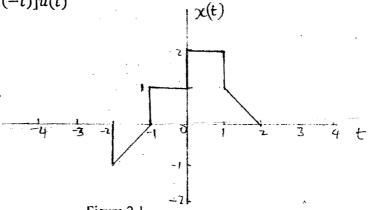


Figure 2,1

b) Determine if the following signals are periodic; if periodic, give the period.

i.
$$x(t) = \cos(4t) + 2\sin(8t)$$
 [3]

ii.
$$x(t) = \cos(3\pi t) + 2\cos(4\pi t)$$
 [3]

iii.
$$x[n] = 10\cos(16\pi n)$$
 [2]

c) Determine if the following systems are: (i) time-invariant, (ii) linear, (iii) causal, (iv) and (v) memoryless

i.
$$y[n+1] + 4y[n] = 3x[n+1] - x[n]$$
 [5]

$$\mathbf{ii.} \qquad \mathbf{y}[n] = n\mathbf{x}[2n] \tag{5}$$

Question 3 [25]

- a) Find the convolution integral of x(t) and h(t) and sketch the convolved signal. [12] $x(t) = (t-1)\{u(t-1)-u(t-3)\}$ and h(t) = [u(t+1)-2u(t-2)]
- b) Consider the Resistor-Inductance (RL) circuit in figure 3.1. Find the differential relating the output voltage y(t) across R and the input voltage x(t) [5]

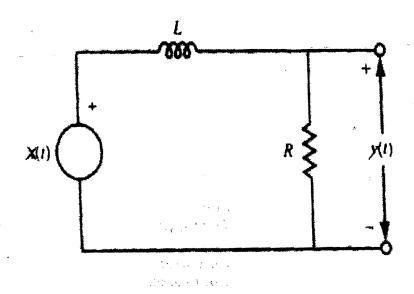
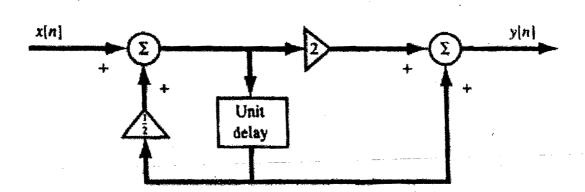


Figure 3.1

c) Determine the discrete-time convolution sum of the given sequences: [8] $x[n] = \{1, 2, 3, 4\} \text{ and } h[n] = \{1, 5, 1\}$

Question 4 [25]

a) Write the input-output equation for the system shown in figure 4.1.



[5]

Figure 4.1

b) Find the total response of the system given by:
$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt^2} + 2y(t) = 2x(t),$$
 [10]

c) Compute the inverse Laplace Transforms of the following functions:

i.
$$X(s) = \frac{10(s+1)}{(s^2+4s+8)s}$$
 [3]

ii.
$$X(s) = \frac{10(s+1)}{s^2+4s+3}e^{-2s}$$
 [4]

d) Compute the Laplace Transforms of the following function:

i.
$$x(t) = u(t) - e^{-2t} \cos(10t) u(t)$$
 [3]

Table of Laplace Transforms

delta function	δ(t)	<u>←</u>	1
shifted delta function	$\delta(t-a)$	$\stackrel{\boldsymbol{\longleftarrow}}{\Longleftrightarrow}$	e-as
unit step	u(t)	$\stackrel{c}{\Longleftrightarrow}$	1
ramp	tu(t)	$\stackrel{\hat{\mathcal{L}}}{\Longleftrightarrow}$	$\frac{1}{s}$ $\frac{1}{s^2}$
parabola	$t^2u(t)$	⇔	2 2
n-th power	ţn.	€	nl an+1
exponential decay	e-at	←	1 2+2
two-sided exponential decay	e-alth	←	2a
	te-at	$\stackrel{\mathcal{L}}{\Longleftrightarrow}$	$\frac{1}{(s+a)^2}$
	$(1-at)e^{-at}$	← C ⇒	(s+o) ²
exponential approach	1 - e ^{-at}		(a+a) a(a+a)
sine	$\sin{(\omega t)}$		<u>ω</u> <u>s²+ω²</u>
cosine	cos (ωt)		8 2 ³ +w ³
hyperbolic sine	$\sinh{(\omega t)}$	€ =	
hyperbolic cosine	cosh (wt)		8 <u>133</u>
exponentially decaying sine	e-at sin (wt)		(s+a)2+w2
exponentially decaying cosine	ក ្នុ ជីធិសេរិ	C →	*+e (*+a)*+w*
frequency differentiation	tf(t)	€	-F'(s)
frequency n-th differentiation	$t^{\mathbf{u}}f(t)$	€	,
time differentiation	$f'(t) = \frac{d}{dt}f(t)$	€	sF(s) - f(0) $s^2F(s) - sf(0) - f'(0)$
time 2nd differentiation	$f''(t) = \frac{d^3}{dt^3} f(t)$	C →	$s^2F(s) - sf(0) - f'(0)$
time n-th differentiation	$f^{(n)}(t) = \frac{d^n}{dt^n} f(t)$	←	$s^n F(s) - s^{n-1} f(0) - \ldots - f^{(n-1)}(0)$
time integration	$\int_0^t f(\tau)d\tau = (u * f)(t)$	₩	$\frac{1}{s}F(s)$
frequency integration	$\frac{1}{t}f(t)$	←	$\int_{a}^{\infty} F(u)du$
time inverse	$f^{-1}(t)$	<u>←</u>	$F(\bullet)-f^{-1}$
time differentiation	$f^{-n}(t)$. <i>c</i>	$\frac{F(s)}{s^n} + \frac{f^{-1}(0)}{s^n} + \frac{f^{-2}(0)}{s^{n-1}} + \ldots + \frac{f^{-n}(0)}{s}$

Properties of Laplace Transforms

 $f(t-t_0) \stackrel{L}{\longleftrightarrow} F(s)e^{-st_0}, \quad t_0 > 0$ i) Time-shift (delay):

Time differentiation: $\frac{df(t)}{dt} \leftarrow \sum_{s} sF(s) - f(0)$ ii)

 $\int_{s}^{t} f(t)dt \longleftrightarrow \frac{F(s)}{s}$ iii) Time integration:

 $af(t) + bg(t) \stackrel{L}{\longleftrightarrow} aF(s) + bF(s)$ Linearity: iv)

Convolution Integral: $x(t) * h(t) \leftarrow \overset{L}{\longleftrightarrow} X(s)H(s)$ v)

 $e^{\alpha t} f(t) \stackrel{L}{\longleftrightarrow} F(s-\alpha)$ vi) Frequency-shift:

Multiplying by t: vii)

 $f(t) \stackrel{L}{\longleftrightarrow} -\frac{dF(s)}{ds}$ $f(at) \stackrel{L}{\longleftrightarrow} \frac{1}{a} F\left(\frac{s}{a}\right), \quad a > 0$ viii) Scaling:

ix) Initial Value Theorem: $\lim_{s\to\infty} \{sF(s)\} = f(0)$

Final Value Theorem: $\lim_{t\to 0} \{sF(s)\} = f(\infty)$ x)

Standard Table of Forced Response or Particular Solutions

	Input	Particular Solution		
1	$cx^{*}(t)$	$a_0 + a_1 x(t) + \ldots + a_m x^m(t)$		
2	$cx^{m}(t)e^{ax(t)}$	$(a_0 + a_1x(t) + \dots + a_mx^m(t))e^{ax(t)}$		
3	$cx^{m}(t)\cos(bx(t))$	$\left(a_0 + a_1 x(t) + \ldots + a_m x^m(t)\right) \cos\left(bx(t)\right) + \left(c_0 + c_1 x(t) + \ldots + c_m x^m(t)\right) \sin\left(bx(t)\right)$		
4	$cx^{m}(t)\sin(bx(t))$	$ \frac{\left(a_0 + a_1 x(t) + \ldots + a_m x^m(t)\right) \sin\left(bx(t)\right) + \left(c_0 + c_1 x(t) + \ldots + c_m x^m(t)\right) \cos\left(bx(t)\right)}{\left(a_0 + a_1 x(t) + \ldots + a_m x^m(t)\right) \sin\left(bx(t)\right) + \left(c_0 + c_1 x(t) + \ldots + c_m x^m(t)\right) \cos\left(bx(t)\right)} $		

where $c, a_0, a_1, a_m, c_0, c_1, c_m$ are constants.