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Question 1 [25]

a)

b)

Define the following terms:

i. Signal

ii. System

iii. Deterministic signal
iv, Random signal

For any arbitrary signal x(t), which is an even signal, show that:

:!; x(t)dt=2.0[ x(t)dt

Name two sources of steady — state errors.

Name the test inputs used to evaluate steady — state error.
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Question 2 [25]

a) Figure 2.1 shows a square wave x(t), find the Fourier coefficients ¢, [7]

a)

b)
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Figure 2,1

Determine if the following signals are periodic; if periodic, give the period.

i. x(t) = cos(4t) + 2sin(8t) 3]
ii. x(t) = cos(3nt) + 2cos(4mnt) 3]
iii. x[n] = 10cos(16mn) ' 2]

Determine if the following systems are: (i) time-invariant, (ii) linear, (iii) causal, (iv) and (v) '

memoryless
i. y[n + 1] + 4y[n] = 3x[n + 1] — x[n] [5]
ii. y[n] = nx[2n] , [5]
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Question 3 [25]

a) Find the convolution integral of x(t) and h(t) and sketch the convolved signal. [12]
x(t) = (¢t —D{u(t — 1) —u(t —3)}and h(t) = [u(t + 1) — 2u(t - 2)]

b) Consider the Resistor-Inductance (RL) circuit in figure 3.1. Find the differential relating the
output voltage y(t) across R and the input voltage x(t) [51

Figure 3.1

c) Determine the discrete-time convolution sum of the given sequences: [8]
x[n] ={1,2,3 4} and h[n] = {1,5,1}



Question 4 [25]

a) Write the input-output equation for the system shown in figure 4.1.

Figure 4.1

b) Find the total response of the system given by:

e 5y o
d*y(t) +3 dy(t) + 2y(t) = 2x(0),

dt? dt
dy(t
with y(0) = —1; idi—) = 1 and x(t) = cos(t) u(t)
t=0
c) Compute the inverse Laplace Transforms of the following functions:

i X(S) — 10(s+1)

) (s2+45+8)s

.. _10(s+1) _p¢

1. X(s) = s2445+3 €

d) Compute the Laplace Transforms of the following function:
i. x() = u(t) — et cos(10t) u(t)
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delta function &) 1
shifted delta Function 5(t - a) e
unit step u(t) :
ramp tu(t) ;‘,
parabals u(t) r
n-th power ¢ P
. exponential decay ot +
two-sided exponential decay e~clt] ;sg'f;'.'
te 1
[
(1-at)e™ P
exponertial approach Cl-e Tt
sine sin (wt) A
cosine cos (wt) P
hyperbolic sine sinh (wt) P o
hyperbolic cosine cosh (wt) =ty
exponentially decaying sine &% gin (wt) ey o
exponentially decaying cosine &~ cos (wt) eyt
frequency differentiation () ~F(s)
~ frequency n-th differentiation £25(t) (-1*F™)(s)
time differentiation Pty = 41() sF(s) - £0)
time 2nd differentiation FH) =450 & F(s) - 5f(0) - £'(0)
time n-th differentiation ™) =550 s"F(s) - "L £(0) —... - flr=1{0)
time integration J§ Hn)dr = (us f)(E) 1p(s)
frequency integration 3(0) [ Flu)du
time inverse () Faere
e diffeensition () S0 LRy 4 50




ies lace T orms

i) Time-shift (delay):  f(f~1,) <= F(s)e™, 1,>0

ii)  Time differentiation: fj—;‘g)-(——-ﬁw—)sF(s)- 1(0)

i)  Time integration: j 7O et FS) (’)
iv)  Linearity: af ({)+bg(t)+—-+aF(s)+bF(s)

v)  Convolution Integral: x(r)* h(t)«——> X(s)H(s)
vi)  Frequency-shift: e f(1) = F(s—a)

vii) Multiplyingby 11 gf()etr—2E (‘)
© viii)  Scaling: f(ar)w‘i‘--);f‘(z], a>0

ix)  Initial Value Theorem: lim{sF(s)} = £(0)
x)  Final Value Theorem: lim {sF(s)} = f(=)

Input Particular Solution
H e (0) | ay +ax()+...+a,x"(f)
2| ex"(r)e™" (a0 +ax(t) + ...+ a,x" (1)) e=®

3| ex”())cos(bx(n)} | (ay +ax(e)+...+ a2 (1)) cos(Bx()) +(cy + ,x(0) +...+c,x" (1) )sin(bx(D))

4| ex"(r)sin (bx(r)) (a° +a1x(t)+...+a,“x"(t))sin(bx(:))+(c“+ctx(t)+...+c,x’(t))cos(bx(t)}

where ¢,q,,a,,4,,6,¢,¢, are constants.




