Faculty of Science Department of Electrical and Electronic Engineering Supplementary Examination 2016

Title of Paper

Signals and Systems I

University of Swaziland

Course Number:

EE331

Time Allowed

3 hrs

Instructions

1. Answer all four (4) questions

2. Each question carries 25 marks

3. Useful information is attached at the end of the

question paper

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of seven (7) pages including the cover page

Question 1 [25]

a) Define the following terms:

Signal	[2]
System	[2]
Deterministic signal	[2]
Random signal	[2]
	System Deterministic signal

b) For any arbitrary signal x(t), which is an even signal, show that:

$$\int_{-\infty}^{\infty} x(t)dt = 2\int_{0}^{\infty} x(t)dt$$

c) Name two sources of steady – state errors.

[4]

[8]

d) Name the test inputs used to evaluate steady – state error.

[5]

Question 2 [25]

a) Figure 2.1 shows a square wave x(t), find the Fourier coefficients c_k

[7]

Figure 2,1

a) Determine if the following signals are periodic; if periodic, give the period.

i.
$$x(t) = \cos(4t) + 2\sin(8t)$$
 [3]

ii.
$$x(t) = \cos(3\pi t) + 2\cos(4\pi t)$$
 [3]

iii.
$$x[n] = 10\cos(16\pi n)$$
 [2]

b) Determine if the following systems are: (i) time-invariant, (ii) linear, (iii) causal, (iv) and (v) memoryless

i.
$$y[n+1] + 4y[n] = 3x[n+1] - x[n]$$
 [5]

ii.
$$y[n] = nx[2n]$$
 [5]

Question 3 [25]

- a) Find the convolution integral of x(t) and h(t) and sketch the convolved signal. [12] $x(t) = (t-1)\{u(t-1) u(t-3)\}$ and h(t) = [u(t+1) 2u(t-2)]
- b) Consider the Resistor-Inductance (RL) circuit in figure 3.1. Find the differential relating the output voltage y(t) across R and the input voltage x(t) [5]

Figure 3.1

c) Determine the discrete-time convolution sum of the given sequences: [8] $x[n] = \{1, 2, 3, 4\} \text{ and } h[n] = \{1, 5, 1\}$

Question 4 [25]

a) Write the input-output equation for the system shown in figure 4.1.

[5]

Figure 4.1

b) Find the total response of the system given by: $\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = 2x(t),$ with y(0) = -1; $\frac{dy(t)}{dt} \Big|_{t=0} = 1$ and $x(t) = \cos(t)u(t)$

c) Compute the inverse Laplace Transforms of the following functions:

i.
$$X(s) = \frac{10(s+1)}{(s^2+4s+8)s}$$
 [3]

ii.
$$X(s) = \frac{10(s+1)}{s^2+4s+3}e^{-2s}$$
 [4]

d) Compute the Laplace Transforms of the following function:

i.
$$x(t) = u(t) - e^{-2t} \cos(10t) u(t)$$
 [3]

Table of Laplace Transforms

delta function shifted delta function unit step ramp parabola	$\delta(t)$ $\delta(t-a)$ $u(t)$ $tu(t)$ $t^2u(t)$	$\stackrel{\mathcal{L}}{\Longleftrightarrow}$	1 e ^{-as} 1 s 1 s 1 s 2 c 2 c
n-th power	ţn.	$\stackrel{\longleftarrow}{\longleftarrow}$	ni 4n+1
exponential decay two-sided exponential decay	e^{-at} $e^{-a t }$ te^{-at} $(1-at)e^{-at}$ $1-e^{-at}$ $\sin(\omega t)$ $\cos(\omega t)$	$ \begin{array}{c} \stackrel{\mathcal{L}}{\Longleftrightarrow} \\ \stackrel{\mathcal{L}}{\Longleftrightarrow} \\ \stackrel{\mathcal{L}}{\Longleftrightarrow} \end{array} $	1 s+a 2a a ² -s ² 1 (s+a) ²
exponential approach	$(1-at)e^{-at}$ $1-e^{-at}$	€ € ⇒ €	(s+a) ² (s+a) ² a s(s+a)
sine cosine	sin (ωt) cos (ωt)	$\stackrel{c}{\Longleftrightarrow}$	ω z²+ω² z²+ω²
hyperbolic sine hyperbolic cosine	sinlı (wt) coeh (wt)	⇔ €	# # # # # # # # # # # # # # # # # # #
exponentially decaying sine exponentially decaying cosine	$e^{-at}\sin(\omega t)$ $e^{-at}\cos(\omega t)$		$\frac{\omega}{(s+a)^2+\omega^2}$ $\frac{s+a}{(s+a)^2+\omega^2}$
frequency differentiation frequency n-th differentiation		$\stackrel{c}{\rightleftharpoons}$	$-F'(s) $ $(-1)^n F^{(n)}(s)$
time differentiation time 2nd differentiation time n-th differentiation	$f'(t) = \frac{d}{dt}f(t)$ $f''(t) = \frac{d^2}{dt^2}f(t)$ $f^{(n)}(t) = \frac{d^n}{dt^n}f(t)$	$\overset{\mathcal{C}}{\underset{\mathcal{C}}{\Longleftrightarrow}}$	sF(s) - f(0) $s^2F(s) - sf(0) - f'(0)$ $s^nF(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
time integration frequency integration		$\stackrel{\mathcal{L}}{\Longleftrightarrow}$	
time inverse time differentiation	$f^{-1}(t)$ $f^{-n}(t)$	€	$\frac{F(s)-f^{-1}}{\frac{F(s)}{s^n} + \frac{f^{-1}(0)}{s^n} + \frac{f^{-2}(0)}{s^{n-1}} + \dots + \frac{f^{-n}(0)}{s}}$

Properties of Laplace Transforms

i) Time-shift (delay):
$$f(t-t_0) \leftarrow F(s)e^{-st_0}$$
, $t_0 > 0$

ii) Time differentiation:
$$\frac{df(t)}{dt} \longleftrightarrow sF(s) - f(0)$$

ii) Time differentiation:
$$\frac{df(t)}{dt} \xleftarrow{L} sF(s) - f(0)$$

iii) Time integration: $\int_{0}^{t} f(t)dt \xleftarrow{L} \frac{F(s)}{s}$

iv) Linearity:
$$af(t) + bg(t) \stackrel{L}{\longleftrightarrow} aF(s) + bF(s)$$

v) Convolution Integral:
$$x(t) * h(t) \leftarrow {}^{L} \rightarrow X(s)H(s)$$

vi) Frequency-shift:
$$e^{\alpha t} f(t) \xleftarrow{L} F(s-\alpha)$$

vii) Multiplying by
$$t: tf(t) \longleftrightarrow -\frac{dF(s)}{ds}$$

viii) Scaling:
$$f(at) \longleftrightarrow \frac{1}{a} F\left(\frac{s}{a}\right), a > 0$$

ix) Initial Value Theorem:
$$\lim_{s\to\infty} \{sF(s)\} = f(0)$$

x) Final Value Theorem:
$$\lim_{s\to 0} \{sF(s)\} = f(\infty)$$

Standard Table of Forced Response or Particular Solutions

	Input	Particular Solution	
1	$cx^{n}(t)$	$a_0 + a_1 x(t) + \ldots + a_m x^m(t)$	
2	$cx^{m}(t)e^{ax(t)}$	$(a_0 + a_1 x(t) + \ldots + a_m x^m(t)) e^{\alpha x(t)}$	
3	$cx^{m}(t)\cos(bx(t))$	$\left(a_0+a_1x(t)+\ldots+a_mx^m(t)\right)\cos\left(bx(t)\right)+\left(c_0+c_1x(t)+\ldots+c_mx^m(t)\right)\sin\left(bx(t)\right)$	
4	$cx^{m}(t)\sin(bx(t))$	$\frac{\left(a_0 + a_1 x(t) + \ldots + a_m x^m(t)\right) \sin(bx(t)) + \left(c_0 + c_1 x(t) + \ldots + c_m x^m(t)\right) \cos(bx(t))}{\left(a_0 + a_1 x(t) + \ldots + a_m x^m(t)\right) \sin(bx(t)) + \left(c_0 + c_1 x(t) + \ldots + c_m x^m(t)\right) \cos(bx(t))}$	

where $c, a_0, a_1, a_m, c_0, c_1, c_m$ are constants.