UNIVERSITY OF SWAZILAND MAIN EXAMINATION, SECOND SEMESTER MAY 2016

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

۰. مە

- 1. There are five questions in this paper. Answer any FOUR questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

THIS PAPER CONTAINS SEVEN (6) PAGES INCLUDING THIS PAGE.

QUESTION ONE (25 marks)

(a) Draw a typical block diagram of a microprocessor based microcomputer system capable of storing user inputs, event counting and timing, interfacing analog inputs, interfacing digital I/O, serial communications and handling interrupts.

(5 marks)

- (b) (i) With respect to a basic processor architecture, briefly state the function of its *ALU*, control unit and few of the dedicated processor registers. (6 marks)
 - (ii) Differentiate between CISC and RISC systems. (2 marks)
- (c) Consider the program segment of a microcontroller program shown in Figure-Q1.

- (i) Determine the memory locations occupied in the program memory by the subroutine section. (3 marks)
- (ii) Tabulate the program counter contents, between the execution of the instruction before the *CALL* and the instruction after the *CALL*. Indicate the changes in the *STACK* at relevant points.

(5 marks)

(d) State the following information with respect to 16F84A microcontroller; instruction width, program memory size, data memory size, data EEPROM size, type of architecture and on-chip modules.

(4 marks)

QUESTION TWO (25 marks)

ŧ.

An ultrasonic ranging module used in a remotely controlled vehicle is initiated by an input pulse (pulse width > $50\mu s$). The module in response generates an output pulse having a pulse width equal to the time taken by the ultrasonic burst to travel to an object and back to the module. Assume that the speed of sound in air is $300\frac{m}{s}$. The input of the module is connected to a 16F84A, PortB(0) and the output of the module is connected to PortA(0). Motor control of the vehicle is connected to PortB(1) and the microcontroller is running on a 10MHz crystal oscillator.

- (i) Draw a diagram to show the interconnections between the microcontroller and the ultrasonic module.
- (ii) Draw the flow chart of a program, which decides if an object is within 50*cm* to switch off the motors. You may consider the program section from the initiation of the input pulse to the module and up to the switching off of the motors.
 Show the calculations of any data values and state your assumptions.

(7 marks)

(2 marks)

(iii) Show the configuration of the registers TRISA, TRISB and OPTION to meet the conditions in (ii) above.

(4 marks)

(iv) Write the code in assembly for (ii) above.

(10 marks)

(v) Show how you are going to connect a crystal oscillator to the microcontroller. (2 marks)

QUESTION THREE (25 marks)

An egg incubator system is implemented using a 16F84A. A heater is used to keep the temperature at the desired value. Humidity is controlled operating a humiditifier and a dehumiditifier as required. The signals used in the system are TTL compatible and listed below.

Description
Output of the temperature sensor. Returns '1' if the temperature
is above the set limit.
'High' output of the humidity sensor. Returns '1' if the
humidity is above the set value.
'Low' output of the humidity sensor. Returns '1' if the
humidity is less than the set value.
Control signal of the heater. Logic '1' applied turns ON the heater.
Control signal of the humiditifier. Logic '1' applied turns ON the humiditifier.
Control signal of the de-humiditifier. Logic '1' applied turns ON the de-humiditifier.

(i) Draw a circuit diagram for this system showing signal interconnections, marking microcontroller pins used. Sensors and the controlled components can be shown as blocks. Clock oscillator connections can be omitted.

(5 marks)

- (ii) Explain briefly a control logic that can be implemented by a microcontroller program. (7 marks)
- (iii) Draw a flowchart of a program based on (ii) above.

(9 marks)

(iv) Using assembly instructions show how you are going to configure ports in your program.

(4 marks)

QUESTION FOUR (25 marks)

- (a) Assume that a 16F84A is used in the following cases.
 - (i) An external device generates a low to high interrupt signal. How do you connect this signal to the microcontroller? Show the configuration of the registers involved. Assume that no other types of interrupts are used.

(3 marks)

(ii) Show the contents of the interrupt control register just after an interrupt mentioned in (i) above.

(2 marks)

(iii) In the case of an interrupt, state the events that will take place in the program execution. Indicate the essential features to be included in an interrupt service routine.

(5 marks)

(iv) The microcontroller is running on a 8MHz crystal oscillator and it is required to generate an interrupt every $500\mu s$. Briefly state a simple way to do this and show the contents of the relevant registers before and after the interrupt. Comment on timing errors if there are any.

(5 marks)

- (b) Assume that a 16F877 microcontroller is used in the following cases.
 - (i) The microcontroller is used to monitor five analog sensors connected to its ADC. Show the configuration of the relevant registers for this operation assuming ADC is turned ON, channel 2 is selected and ready to convert. State your assumptions if there are any.

(5 marks)

(ii) After the conversion is just started and running, indicate the changes in the registers mentioned in (i) above.

(2 marks)

(iii) If a 4*MHz* crystal oscillator is to be used, show a suitable option for *ADCS*1 and *ADCS*0 bits giving justification.

(3 marks)

QUESTION FIVE (25 marks)

(a) A serial SPI digital temperature sensor is shown in Figure-Q5. It is to be used with a 16F877 microcontroller.

Figure-Q5

(i) Draw a block diagram to show the interconnections between the sensor and the microcontroller. Show <u>only</u> the pins that are interconnected giving identification including the pin numbers. State the assumptions used if there are any.

(6 marks)

(ii) Explain briefly the way data is transferred from the sensor to the microcontroller.

(9 marks)

(b) Assume that for the case in (a) above, the microcontroller is running on a 4MHz crystal oscillator. The maximum data rate of the sensor is $300 \frac{kb}{s}$.

Show the configuration of the necessary registers of the microcontroller which can be used for this interfacing. In addition to the usual settings, it requires positive idle state of the clock, data transfer on the falling edge of the clock and data sampling at the middle of the bit period. Show the settings of *SSPCON*, *SSPSTAT* and any other register involved in the configuration.

(10 marks)

PIC 16F84A

File Addre	SS	F	ile Address
00h	Indirect addr.(1)	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h			87h
08h	EEDATA	EECON1	88h
0 9h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	BCh
4Fh 50h			CFh D0h

STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x	
IRP	RP1	RP0	TO	PD	Z	DC	С	
bit 7							bit G	

Unimplemented: Maintain as '0'

RP0: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

- TO: Time-out bit
- 1 = After power-up, CLRWDT instruction, or SLEEP instruction
- 0 = A WDT time-out occurred
- PD: Power-down bit
- 1 = After power-up or by the CLRWDT instruction
- 0 = By execution of the SLEEP instruction
- Z: Zero bit

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

C: Carry/Dorrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

PIC 16F84A

OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	P\$0	
bit 7							bit 0	

RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin

0 = Interrupt on falling edge of RB0/INT pin

TOCS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin

0 = Internal instruction cycle clock (CLKOUT)

TOSE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin

0 = Increment on low-to-high transition on RA4/T0CKI pin

PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits

Bit Value TMR0 Rate WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1 : 16
101	1:64	1:32
110	1 : 128	1:64
111	1:256	1 : 128

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-x						
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF
bit 7							bit 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

0 = Disables all interrupts

EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts

0 = Disables the EE Write Complete interrupt

T0IE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt

TOIF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

INTF: R80/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7:RB4 pins changed state (must be cleared in software)

0 = None of the RB7:RB4 pins have changed state

16F84A and 16F877

,

Mnem	ionic,	• • • • • • • • • • •	Qualas	14-Bit Opcode				Status	Notes
Opera	ands	Description		MSD			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS		RATIC	NS	********			
ADDWF	f, d	Add W and f	1	00	0111	dfff	1111	C,DC,Z	1,2
ANDWF	f, đ	AND W with f	1	00	0101	dfff	ffff	z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	z	2
CLRW	*	Clear W	1	00	0001	0xxx	30000	z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1 (2)	00	1011	attt	iiii		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip If 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	ť, d	Inclusive OR W with f	1	00	0100	dfff	iiii	z	1,2
MOVF	1, d	Move 1	1	00	1000	dfff	fiif	z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	iiii		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	ſ, d	Rotate Left 1 through Carry	1	00	1101	dfff	iiii	C	1,2
RRF	ſ, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	c	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	afff	1111	C,DC,Z	1,2
SWAPF	1, d	Swap nibbles in f	1	00	1110	1110	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	afff	TTTT	z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	RATIO	15				
8CF	1, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, D	Bit Set f	1	01	0166	biff	1111		1,2
BTFSC	t, b	Bit Test f, Skip if Clear	1 (2)	01	1066	bfff	IIII		3
BTFSS	í, d	Bit Test f, Skip If Set	1 (2)	01	11bb	bfff	IIII		3
		LITERAL AND CONTROL	OPERAT	IONS					
ADDLW	ĸ	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	ĸ	AND literal with W	1	11	1001	KKKK	kkkk	z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	ĸ	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	KKKK	kkkk	C.DC.Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	z	

Note 1: When an I/O register is modified as a function of itself (e.g., NOVF PORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.
2: If this instruction is executed on the TMRO register (and, where applicable, d = 1), the prescaler will be cleared if other than the prescaler will be cleared if the data is the data will be used with a '0'.

assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

...

Pin Diagram

.

PDIP		
	\bigcirc	40 RB7/PGD
RAQ/AND 2		39 🗍 - RB6/PGC
RA1/AN1 🛶 🗖 3		38 🔲 🛶 🛛 🛛 RB5
RA2/AN2//REF- 🛶 🗖 4		37 🗍 🛶 🗛 RB4
RA3/AN3//REF+ 🛶 🛏 🗖 5		36 🗍 🖛 🔶 RB3/PGM
RA4/TOCKI 🛶 🗖 6		35 🗍 🛶 🛶 R82
RAS/ANA/SS 🛶 🗖 7	_	34 🗍 🖛 🗰 RB1
RED/RD/ANS 🔶 🗖 8	2	33 🗍 🛶 Requint
RE1/WR/AN5 🖛 🛏 🗖 9	8	32 🗍 🖛 🛶 🗤 🖓 🖓 🖓
RE2/CS/AN7	7	31 🗍 🖛 Vss
VDD — 🛏 🗖 11	ò	30 🖾 RD7/PSP7
VSS 🖬 🖬 12	9	29 - RD6/PSP6
OSC1/CLIKIN	5	28 - + RD5/PSP5
	¥	27 🗌 🛶 🖌 RD4/PSP4
RC0/T1OSO/T1CKI		26 - RC7/RX/DT
RC1/T1OSI/CCP2		25 - RC6/TX/CK
RC2/CCP1 🛶 🗖 17		24 🗍 🛶 🖌 RC5/SDO
RC3/SCK/SCL		23 - RC4/SDI/SDA
RD0/PSP0 🛶 🖬 19		22 RD3/PSP3
RD1/PSP1 20		21 - RD2/PSP2
L		⁻ i

Data Page 4 of 9

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE	D/Ã	P	S	R/W	UA	BF	
bit 7 b								

SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

In I²C Master or Slave mode:

1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)

0 = Slew rate control enabled for high speed mode (400 kHz)

CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)

SPI mode:

For CKP = 0

1 = Data transmitted on rising edge of SCK

0 = Data transmitted on falling edge of SCK

For CKP = 1

1 = Data transmitted on falling edge of SCK

0 = Data transmitted on rising edge of SCK

in I²C Master or Slave mode:

1 = input levels conform to SMBus spec

0 = input levels conform to I²C specs

D/A: Data/Address bit (I²C mode only)

1 = Indicates that the last byte received or transmitted was data

0 = Indicates that the last byte received or transmitted was address

P: STOP bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)

0 = STOP bit was not detected last

S: START bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a START bit has been detected tast (this bit is '0' on RESET)

0 = START bit was not detected last

RW: Read/Write bit Information (I²C mode only)

This bit holds the RAW bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit.

In I²C Slave mode:

1 = Read

0 = Write

In I²C Master mode:

1 = Transmit is in progress

0 = Transmit is not in progress

Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.

UA: Update Address (10-bit I²C mode only)

1 = Indicates that the user needs to update the address in the SSPADD register

0 = Address does not need to be updated

BF: Buffer Full Status bit

Receive (SPI and I²C modes):

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

Transmit (1²C mode only):

1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full

0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0 bit 7 bit bit VCOL: Write Collision Detect bit Aaster mode: bit bit = A write to SSPBUF was attempted while the I2C conditions were not valid bit bit = A write to SSPBUF was attempted while the I2C conditions were not valid bit = No collision Stave mode: bit = SSPBUF register is written while still transmitting the previous word (must be cleared in software) bit = SSPBUF register is written while still transmitting the previous word (must be cleared in software) bit = No collision SSPOV: Receive Overflow Indicator bit 1 1SPI mode: = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slav mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register (Mother to word) bit is not set, since each operation is initiated by writing to the SSPBUF register	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 bit WCOL: Write Collision Detect bit Aaster mode:	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPMO
 WCOL: Write Collision Detect bit <u>Master mode:</u> = A write to SSPBUF was attempted while the I2C conditions were not valid > No collision <u>Slave mode:</u> = SSPBUF register is written while still transmitting the previous word (must be cleared in software) > = No collision SSPOV: Receive Overflow Indicator bit <u>1 SPI mode:</u> = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register 	bit 7		sd			•		bit O
Master mode: i = A write to SSPBUF was attempted while the I2C conditions were not valid) = No collision Stave mode: . = SSPBUF register is written while still transmitting the previous word (must be cleared in software)) = No collision SSPOV: Receive Overflow Indicator bit <u>SPI mode:</u> = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slaw mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register	NCOL: Wri	te Collision De	etect bit					
 = A write to SSPBUF was attempted while the I2C conditions were not valid = No collision stave mode: = SSPBUF register is written while still transmitting the previous word (must be cleared in software) = No collision SSPOV: Receive Overflow Indicator bit <u>SPI mode:</u> = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slav mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register 	laster mod	<u>le:</u>						
 = No collision <u>slave mode:</u> = SSPBUF register is written while still transmitting the previous word (must be cleared in software) = No collision SSPOV: Receive Overflow Indicator bit <u>1 SPI mode:</u> = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slav mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register 	= A write	to SSPBUF w	as attempted v	while the I2C	conditions we	ere not valid		
 stave mode: SSPBUF register is written while still transmitting the previous word (must be cleared in software) No collision SSPOV: Receive Overflow Indicator bit SPI mode: A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slav mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register 	= No colli	sion						
 SSPBUF register is written while still transmitting the previous word (must be cleared in software) No collision SSPOV: Receive Overflow Indicator bit <u>SPI mode:</u> A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slaw mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register 	lave mode	<u>.</u>						
software) = No collision SSPOV: Receive Overflow Indicator bit <u>1 SPI mode:</u> = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slaw mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register (Under the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register	= SSPBU	IF register is w	ritten while st	ill transmitting	the previous	word (must t	e cleared in	
 = No collision SSPOV: Receive Overflow Indicator bit <u>n SPI mode:</u> = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slav mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register 	softwar	e) -						
SSPOV: Receive Overflow Indicator bit <u>n SPI mode:</u> . = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slav mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register (there have not be the set).) = No colli	sion						
a. SPI mode: = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slav mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register (Interflow bit is not set).	SSPOV R	ereive Overilo	w Indicator bit	ł				
= A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slaw mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register (the backword overflow) and the set.	2 CDI mode	o.	in interestion of	•				
mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow tils not set, since each operation is initiated by writing to the SSPBUF register (the overflow) and the ssPBUF register.	- A new h	nde je rocejver	i while SCORi	iE holde prov	ioue data. Dat	in in CCDCD is	loct on overf	iow In Slave
mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register	- A IICW L	be upor much	mad the SSPDC		ous uata. Dat	alli soron e	oid quorfiowr	In Master
indoe, the overnow bit is not set, since each operation is initiated by whing to the SSPBOF register	mode, t	ne user must	tin met not oir	SOF, even in t	nay transmitte	ny uata, to av	to the CCDD	IT Master
	/Musth	ne overnow Di e cleared in s	US HULSCL, SI	ice each ope	adon is anda	ieu by whiting	to the Sarb	or register.

0 = No overflow

In I²C mode:

1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)

0 = No overflow

SSPEN: Synchronous Serial Port Enable bit

In SPI mode,

When enabled, these pins must be property configured as input or output

1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins

0 = Disables serial port and configures these pins as I/O port pins

in I²C mode,

When enabled, these pins must be properly configured as input or output 1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins = Displace and port and configures these as I/C and solutions

0 = Disables serial port and configures these pins as I/O port pins

CKP: Clock Polarity Select bit

in SPI mode:

1 = Idle state for clock is a high level

0 = Idle state for clock is a low level

In I²C Stave mode:

SCK release control

1 = Enable clock

0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

in I²C Master mode:

Unused in this mode

SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0000 = SPI Master mode, clock = Fosc/4

0001 = SPI Master mode, clock = Fosc/16

0010 = SPI Master mode, clock = Fosc/64

0011 = SPI Master mode, clock = TMR2 output/2

0100 = SPI Slave mode, clock = SCK pin. SS pin control enabled.

0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.

 $0110 = I^2 C$ Slave mode, 7-bit address

0111 = I²C Slave mode, 10-bit address

 $1000 = I_{c}^{2}C$ Master mode, clock = Fosc / (4 * (SSPADD+1))

 $1011 = I^2C$ Firmware Controlled Master mode (slave idle)

1110 = I^2C Firmware Controlled Master mode, 7-bit address with START and STOP bit interrupts enabled

1111 = I²C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled

1001, 1010, 1100, 1101 = Reserved

Data Page 6 of 9

PIC16F877/876 REGISTER FILE MAP

,	File Address		File Address		File Address	,	File Addres
Indirect addr. ^(*)	00h	Indirect addr.(")	80h	Indirect addr. ^(*)	100h	Indirect addr. ^(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	1841
PORTA	05h	TRISA	85h	1.	105h	Margaret S.	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	1861
PORTC	07h	TRISC	87h		107h		1871
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h	C Managada	108h	ALL	188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89ħ		109h		1891
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	88h	INTCON	108h	INTCON	18 B I
PIR1	OCh	PIE1	8Ch	EEDATA	10Ch	EECON1	18C
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18D
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Researed	18EI
TMR1H	OFh	Kint	8Fh	EEADRH	10Fh	Reserved	18F1
T1CON	10h	And Providence (90h		110h		190
TMR2	11h	SSPCON2	91h		111h		1911
T2CON	12h	PR2	92h		112h		1921
SSPBUF	13h	SSPADD	93h		113h		1931
SSPCON	14h	SSPSTAT	94h		114h		1941
CCPR1L	15h		95h		115h		1951
CCPR1H	16h		96h		116h		1961
CCP1CON	17h	S. W. Martha	97h	General	117h	General	1971
RCSTA	18h	TXSTA	98h	Register	118h	Register	198t
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	1991
RCREG	1Ah		9Ah	-	11Ah		19AJ
CCPR2L	1Bh	Sec. Mar. Carl	9Bh		11Bh		19 B
CCPR2H	1Ch	1	9Ch		11Ch		190
CCP2CON	1Dh	- 12 M	9Dh		11Dh		19D
ADRESH	1Eh	ADRESL	9Eh		11Eh		19E
ADCONO	1Fh	ADCON1	9Fh		11Fh		19Fi
	20h		A0h		120h		1A0
General Purpose Register		General Purpose Register 80 Rytes		General Purpose Register 80 Butes		General Purpose Register 80 Putes	
96 Bytes			EFh		16Fh		1EF
	754	accesses 70h-7Fh	FOh	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1F0
Bank 0		Bank 1		Bank 2	1 1 2 1 12	Bank 3	11.4.1

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

.

Note 1: These registers are not implemented on the PIC16F876.2: These registers are reserved, maintain these registers clear.

ADCON0 REGISTER (ADDRESS: 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON	
bit 7							bit ()

ADCS1: ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4) 101 = channel 5, (RE0/AN5)⁽¹⁾

110 = channel 6, (RE1/AN6)⁽¹⁾

111 = channel 7, (RE2/AN7)⁽¹⁾

GO/DONE: A/D Conversion Status bit

If ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

Unimplemented: Read as '0'

ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U -0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM				PCFG3	PCFG2	PCFG1	PCFG0
bit 7	-	,					bit 0

ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

Unimplemented: Read as '0'

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	ANO RAO	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	A	A	A	A	A	A	Α	A	VDD	Vss	8/0
0001	А	A	A	Α	VREF+	A	A	A	RA3	Vss	7/1
0010	D	D	D	Α	A	A	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	A	Α	A	RA3	Vss	4/1
0100	D	D	D	D	A	D	A	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	A	A	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	A	A	A	Α	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	A	Α	A	A	Α	A	VDD	Vss	6/0
1010	D	D	A	A	VREF+	A	A	Α	RA3	Vss	5/1
1011	D	D	A	Α	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	Ď	Α	VREF+	VREF-	A	A	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	A	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

.

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:						
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'				
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			