University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Supplementary Examination 2016

Title of Paper	:	Introduction to Digital Signal Processing
Course Number	:	EE443
Time Allowed	:	3 hrs
Instructions	: 1. 2. 3.	Answer all four (4) questions Each question carries 25 marks Useful information is attached at the end of the question paper

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of seven (7) pages

[2]

Question 1

- (a) Calculate the filter coefficients for a 5-tap FIR bandpass filter with a lower cut-off frequency of 2,000 Hz and an upper cut-off frequency of 2,400 Hz at a sampling rate of 8,000 Hz. Also, find the transfer function. [12]
- (b) A second-order notch filter is required to satisfy the following specifications:
 - Sampling rate = 8,000 Hz
 - 3 dB bandwidth: BW =100 Hz
 - Narrow passband centered at f₀ = 1,500 Hz

Find the transfer function using the pole-zero placement approach. [6]

(c) Draw the digital signal processor based on the Harvard architecture and briefly describe the additional units. [5]

(d) List any DSP applications

Question 2

(a) Design a highpass FIR filter with the following specifications:

Stopband = 0-1,500 Hz Passband = 2,500-4,000 Hz Stopband attenuation = 40 dB Passband ripple = 0.1 dB Sampling rate = 8,000 Hz [13]

- (b) Perform the FIR filter realization using the linear phase form for the designed filter in (a) [2]
- (c) In one of the DSP processors, the program efficiency is greatly improved by the use of registers, explain the functions of the registers [5]
- (d) Compact disc recording system is one of the DSP real world applications. Explain what happens during playback time and the purpose of oversampling in such DSP system.
 [5]

Question 3

- (a) Design a second-order digital bandpass Butterworth filter with the following specifications:
 - Upper cutoff frequency of 2.6 kHz and
 - Lower cutoff frequency of 2.4 kHz,
 - Sampling frequency of 8,000 Hz.

State the difference equation and the transfer function of the filter designed [15]

(b) Use direct Form I and II to realize the filter. [8]

[2]

(c) Given the following difference equation,

$$y(n) = 0.5 x(n) + 0.5 x(n-1)$$

Find H(z)

Question 4

ļ

(a) Compare the executions cycle of the two architectures, Von Neumann and Harvard [10]

(b) Find
$$x(n)$$
 if $X(z) = \frac{z^2}{(z-1)(z-0.5)^2}$ [12]

(c) Find the z-transform of the following

$$x(n) = e^{-0.1n} \cos(0.25\pi n) u(n)$$
[3]

Table 1: Properties of z-transform

Property	Time Domain	z-Transform
Linearity Shift theorem Linear convolution	$ax_1(n) + bx_2(n) x(n - m) x_1(n) * x_2(n) = \sum_{k=0}^{\infty} x_1(n - k) x_2(k)$	$aZ(x_1(n)) + bZ(x_2(n))$ $z^{-m}X(z)$ $X_1(z)X_2(z)$

۰.

Table 2: Partial fraction(s) and formulas for constant(s).

Partial fraction with the first-order real pole: $\frac{R}{z-p} \qquad \qquad R = (z-p)\frac{X(z)}{z}\Big|_{z=p}$ Partial fraction with the first-order complex poles: $\frac{Az}{(z-P)} + \frac{A^*z}{(z-P^*)} \qquad \qquad A = (z-P)\frac{X(z)}{z}\Big|_{z=P}$ $P^* = \text{complex conjugate of } P$ $A^* = \text{complex conjugate of } A$ Partial fraction with *m*th-order real poles: $\frac{R_m}{(z-p)} + \frac{R_{m-1}}{(z-p)^2} + \dots + \frac{R_1}{(z-p)^m} \qquad \qquad R_k = \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} \left((z-p)^m \frac{X(z)}{z}\right)\Big|_{z=p}$

Table 3: 3 dB Butterworth lowpass prototype transfer functions ($\varepsilon = 1$)

n	$H_P(s)$
1	$\frac{1}{s+1}$
3	$\frac{s^2+1.4142s+1}{1}$
4	$\frac{s^{2}+2s^{2}+2s+1}{s^{4}+2.6131s^{3}+3.4142s^{2}+2.6131s+1}$
5 6	s ⁵ +3.2361s ⁴ +5.2361s ³ +5.2361s ² +3.2361s+1
<u> </u>	s ⁶ +3.8637s ⁵ +7.4641s ⁴ +9.1416s ³ +7.4641s ² +3.8637s+1

Table 4: Summary of ideal impulse responses for standard FIR filters.

4

Filter Type	Ideal Impulse Response h(n) (noncausal FIR coefficients)
Lowpass:	$h(n) = \begin{cases} \frac{\Omega_c}{\pi} & n = 0\\ \frac{\sin(\Omega_c n)}{n\pi} \text{ for } n \neq 0 & -M \le n \le M \end{cases}$
Highpass:	$h(n) = \begin{cases} \frac{\pi - \Omega_c}{\pi} & n = 0\\ -\frac{\sin(\Omega_c n)}{n\pi} & \text{for } n \neq 0 & -M \le n \le M \end{cases}$
Bandpass:	$h(n) = \begin{cases} \frac{\Omega_H - \Omega_L}{\pi} & n = 0\\ \frac{\sin(\Omega_H n)}{n\pi} - \frac{\sin(\Omega_L n)}{n\pi} & \text{for } n \neq 0 & -M \le n \le M \end{cases}$
Bandstop:	$h(n) = \begin{cases} \frac{\pi - \Omega_H + \Omega_L}{\pi} & n = 0\\ -\frac{\sin(\Omega_H n)}{n\pi} + \frac{\sin(\Omega_L n)}{n\pi} & \text{for } n \neq 0 & -M \le n \le M \end{cases}$
Causal FIR filter coefficients	s: shifting $h(n)$ to the right by M samples.

Transfer function:

 $H(z) = b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_{2M} z^{-2M}$ where $b_n = h(n - M), n = 0, 1, \dots, 2M$

Table 5: 3 dB Butterworth lowpass prototype transfer functions ($\varepsilon = 1$)

n	$H_P(s)$
1	$\frac{1}{s+1}$
3	$\frac{s^2 + 1.4142s + 1}{\frac{1}{s^3 + 2s^2 + 2s + 1}}$
4	$\frac{1}{s^4 + 2.6131s^3 + 3.4142s^2 + 2.6131s + 1}$
5	$\overline{s^5+3.2361s^4+5.2361s^3+5.2361s^2+3.2361s+1}$
0	s ⁶ +3.8637s ⁵ +7.4641s ⁴ +9.1416s ³ +7.4641s ² +3.8637s+1

Table 6: Analog lowpass prototype transformations

Filter Type	Prototype Transformation
Lowpass	$\frac{s}{\omega_c}$, ω_c is the cutoff frequency
Highpass	$\frac{\omega_{c}}{s}, \omega_{c}$ is the cutoff frequency
Bandpass	$\frac{s^2+\omega_0^2}{sW},\omega_0=\sqrt{\omega_l\omega_h},W=\omega_h-\omega_l$
Bandstop	$\frac{sW}{s^2+\omega_0^2}, \omega_0 = \sqrt{\omega_l \omega_h}, W = \omega_h - \omega_l$

Table 6: Conversion from analog filter specifications to lowpass prototype specifications.

Analog Filter Specifications	Lowpass Prototype Specifications
Lowpass: ω_{ap} , ω_{as}	$v_p = 1, v_s = \omega_{as}/\omega_{ap}$
Highpass: ω_{ap} , ω_{as}	$v_p = 1, v_s = \omega_{ap}/\omega_{as}$
Bandpass: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ash}	$v_p = 1, v_s = \frac{\omega_{act} - \omega_{act}}{\omega_{act} - \omega_{act}}$
$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \ \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$	જોવડાં લોડા
Bandstop: ω_{apl} , ω_{aph} , ω_{asl} , ω_{ash}	$v_p = 1, v_s = \frac{\omega_{aph} - \omega_{apf}}{\omega_{aph} - \omega_{asf}}$
$\omega_0 = \sqrt{\omega_{apl}\omega_{aph}}, \ \omega_0 = \sqrt{\omega_{asl}\omega_{ash}}$	GROUP LACE

 ω_{ap} , passband frequency edge; ω_{as} , stopband frequency edge; ω_{apl} , lower cutoff frequency in passband; ω_{aph} , upper cutoff frequency in passband; ω_{asl} , lower cutoff frequency in stopband; ω_{ash} , upper cutoff frequency in stopband; ω_{o} , geometric center frequency.

The Z-transform

Line 1	No. <i>x(n), n≥</i> 0	z-Transform X(z)	Region of Convergence
1	x(n)	$\sum_{n=0}^{\infty} x(n) z^{-n}$	
2	δ(n)	1	z > 0
3	au(n)	$\frac{az}{z-1}$	z > 1
4	m(n)	$\frac{z}{(z-1)^2}$	<i>z</i> > 1
5	$n^2u(n)$	$\frac{z(z+1)}{(z-1)^3}$	z > 1
6	$a^*u(n)$	$\frac{z}{z-a}$	z > a
7	$e^{-n\sigma}u(n)$	$\frac{z}{(z-e^{-\theta})}$	$ z > e^{-a}$
8	$na^n u(n)$	$\frac{az}{(z-a)^2}$	z > a
9	sin (an)u(n)	$\frac{z\sin(a)}{z^2 - 2z\cos(a) + 1}$	z > 1
10	cos (an)u(n)	$\frac{z[z-\cos{(a)}]}{z^2-2z\cos{(a)}+1}$	z > 1
11	$a^{n}\sin(bn)u(n)$	$\frac{[a\sin(b)]z}{z^2 - [2a\cos(b)]z + a^2}$	z > a
12	$a^{*}\cos(bn)u(n)$	$\frac{z[z - a\cos(b)]}{z^2 - [2a\cos(b)]z + a^{-2}}$	z > a
13	$e^{-\alpha n}\sin(bn)u(n)$	$\frac{[e^{-a}\sin(b)]z}{z^2 - [2e^{-a}\cos(b)]z + e^{-2a}}$	$ z > e^{-a}$
14	$e^{-an}\cos(bn)u(n)$	$\frac{z[z-e^{-a}\cos(b)]}{z^2-[2e^{-a}\cos(b)]z+e^{-2a}}$	$ z > e^{-a}$
15	$2 A P ^{n} \cos(n\theta + \phi)u(n)$ where P and A are complex constants	$\frac{Az}{z-P} + \frac{A^*z}{z-P^*}$	