UNIVERSITY OF SWAZILAND MAIN EXAMINATION, SECOND SEMESTER MAY 2018

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: MICROCONTROLLERS AND MICROCOMPUTER SYSTEMS COURSE CODE: EE423

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are five questions in this paper. Answer any FOUR questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.
- 3. You may find some useful data at the end of the paper.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SIX (6) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

(a) (i) State the difference between Von-Neumann and Harvard architectures.

(2 marks)

(ii) How do you describe 16F84A as a RISC type microcontroller?

(3 marks)

(iii) Identify the peripheral modules available in 16F84A and 16F877.

(3 marks)

(b) A section of a program using 16F84A is given in Figure-Q1. Assume it is being used with a 5 MHz crystal oscillator.

movlw	b'11000100'
movwf	option_reg
bcf	status.5

Figure-Q1

(i) Describe the instructions shown in Figure-Q1.
(3 marks)
(ii) What is the signal frequency at the timer input?
(3 marks)
(iii) Calculate the time taken for a overflow of the timer.
(4 marks)
(iv) A program using 16F84A requires the timer to overflow in each 10ms. The crystals available for the clock oscillator are 1MHz, 1.843MHz, 3.27MHz and 3.58MHz. Select a suitable crystal justifying your answer. Modify the assembly instructions in Figure-Q1 to accommodate your selection. What is the percentage timing error?

(7 marks)

QUESTION TWO (25 marks)

Two segments of a 16F84A microcontroller program are shown in Figure-Q2(a) and in Figure-Q2(b).

run wait	equ 010b equ 022f 	movlw ff
run wait	instruction call wait instruction instruction	movwf reg1 loop nop nop decfsz reg1,1 goto loop
	instruction instruction instruction return	Figure-Q2(b)

Figure-Q2(a)

- (a) Consider the program segment shown in Figure-Q2(a).
 - (i) Identify the subroutine part in this program segment and specify how much program memory the subroutine will occupy.

(4 marks)

(ii) List the changes in stack memory and the program counter, from the execution of *'run instruction'* to the instruction following the *'call wait'*.

(6 marks)

- (b) The code segment shown in Figure-Q2(b), is to be run by the microcontroller clocked with a 8MHz crystal.
 - (i) Calculate the actual execution time taken by this code segment.

(6 marks)

(ii) Using Figure-Q2(b) as a block, draw a flow chart of a program section that will take an execution time of 10ms. Your method must consider a small code size and need to show the calculations of the values required.

(9 marks)

QUESTION THREE (25 marks)

A green house environment control system is designed to use a 16F84A microcontroller. The system components whose inputs and outputs are TTL compatible, listed below.

Light sensor:	Returns '1' if the light level falls below a minimum value.
Moisture sensor:	Returns'1' if the moisture is less than a minimum value.
Temperature sensor:	Returns '1' if the temperature falls below a minimum value.
Controlled componer	tts: A heater, water sprinkler, and lights which are activated by '1' on
	their control lines.
(i) Draw a circuit o	liagram showing the microcontroller pins used, the interconnections to
the sensors and	the controlled components. Show the sensors and the controlled
components as	blocks.

(ii) Show the control logic you are going to implement by the microcontroller program with the aid of a table.

(iii) Draw a flowchart for the microcontroller program.

(9 marks)

(7 marks)

(5 marks)

(iv) Write the assembly instructions which configure the ports as required.

(4 marks)

QUESTION FOUR (25 marks)

- (a) In a program written for 16F84A microcontroller, interrupts are used.
 - (i) Show the configuration of the relevant registers when using the timer and PortB(4) to PortB(7) as interrupts.

(2 marks)

(ii) While program execution, the INTCON register showed a value of 29h. Explain the conditions described by the INTCON register at this point.

(2 marks)

(iii) When an interrupt occurs, state the events that will take place before and after the execution of interrupt service routine. Also indicate the essential features to be included in an interrupt service routine.

(6 marks)

(iv) The program needs to produce a regular interrupt in every 1ms, and the microcontroller clock is 8MHz. When the timer is used for this task, show the appropriate settings of the relevant registers. What will be the values of these registers just after such an interrupt?

(5 marks)

- (b) The microcontroller 16F877 is to be used in an application with a 4MHz crystal oscillator.
 - (i) When using its Analog to Digital Converter (ADC), it is required to have +Ve external reference and only four analog input channels. If the input channel 2 is selected and the ADC is turned on but not started to convert, show the settings of the relevant registers. Assume left justification.

(6 marks)

(ii) After the conversion is started and running, show the changes in these registers.

(2 marks)

(iii) State what is to be ensured before the start of conversion, after following the steps in (i) above.

(2 marks)

QUESTION FIVE (25 marks)

- (a) The USART interface of 16F877 is used to connect a device with it. The connection is done full duplex and asynchronous with a baud rate of 115.2 kb/s. A crystal oscillator of 4MHz is used and 8 bit data transfer is considered.
 - (i) Show the interconnection between the two devices clearly marking the relevant pin numbers and pin names of the 16F877.

(2 marks)

(ii) Show the configuration of the registers TXSTA, SPBRG and RCSTA assuming high speed option for this connection.

You may use, $BR = \frac{F_{osc}}{16(X+1)}$ with usual notation.

(8 marks)

(iii) State briefly how the data is sent and received through this interface.

(5 marks)

- (b) A device having a data rate of 200kHz is connected to the SPI of a 16F877 microcontroller, running with a crystal oscillator of 4MHz. The relevant pin names of the device are DIN, DOUT, and SCLK.
 - (i) Draw a diagram to show the interconnection, marking the pin numbers and pin names of 16F877 and the device.

(2 marks)

(ii) Show the settings of the SSPCON, SSPSTAT and any other register involved in the configuration, if the 16F877 and the device are connected using SPI. You may include the settings for high idle state clock, data sampling at the middle of the bit period and the data transfers are on the falling edge of clock.

(8 marks)

PIC 16F84A

File Addre	SS	F	ile Address
00h	Indirect addr. ⁽¹⁾	Indirect addr. ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	3186 rt	-	87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	8Ch
4Fh 50h	्र भूग संस्थित र संसर्थ संस्थित र १	;	CFh D0h

STATUS REGISTER (ADDRESS 03h, 83h)

R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IRP	RP1	RP0	TO	PD	Z	DC	С
bit 7							bit 0

Unimplemented: Maintain as '0'

RP0: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)

00 = Bank 0 (00h - 7Fh)

TO: Time-out bit

1 = After power-up, CLRWDT instruction, or SLEEP instruction

0 = A WDT time-out occurred

PD: Power-down bit

1 = After power-up or by the CLRWDT instruction

0 = By execution of the SLEEP instruction

Z: Zero bit

1

1 = The result of an arithmetic or logic operation is zero

0 = The result of an arithmetic or logic operation is not zero

DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

C: Carry/Dorrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the Most Significant bit of the result occurred

0 = No carry-out from the Most Significant bit of the result occurred

Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Data Page 1 of 10

16F84A and 16F877

• •

Mnemonic, Description		Qualas	14-Bit Opcode				Status	blates	
Ope	erands	Cycles	MSb		LSb		Affected	NOTAZ	
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and 1	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	z	1,2
CLRF	1	Clear f	1	00	0001	1222	ffff	z	2
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	z	
COMF	f, d	Complement f	1	00	1001	dfff	1111	z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	tttt	z	1,2
DECFSZ	f, d	Decrement I, Skip if 0	1 (2)	00	1011	dfff	iiii		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	tttt	z	1,2
INCFSZ	f, d	Increment I, Skip If 0	1 (2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	tttt	Z	1,2
MOVF	f, d	Move f	1	00	1900	dfff	tttt	z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	tttt	1	
NOP	-	No Operation	1	00	0000	0,000	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	c	1,2
RRF	f, d	Rotate Right 1 through Carry	1	00	1100	dfff	tttt	C	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	tttt	C.DC.Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	tttt		1,2
XORWF	f, đ	Exclusive OR W with f	1	00	0110	afff	tttt	z	1,2
		BIT-ORIENTED FILE REGIST	ER OPER	ATION	15			<u> </u>	<u> </u>
BCE	1 h	Bit Clear f	1	01	0.055		****	<u> </u>	1.2
RSF	(, U () b	Bit Set f		01	0166	DILL DELL	****		1.2
BTESC	1, 5	Bit Test f Skin if Clear	1 (2)	01	1000	bere	****]	1.2
BTESS	4.0 1.6	Bit Test f. Skip if Set	1(2)	01	11000	DILL Tere	****		2
011 00	ι, μ		(2)	1 01	1100	DILL	TITT		3
		LITERAL AND CONTROL	OPERAL	IONS					
ADDLW	ĸ	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	ĸ	AND Ineral with W		11	1001	KKKK	kkkk	Z	
CALL	. К	Call subroutine	2	10	OKKK	kkkk	KKKK		
CLRWDT	r -	Clear Watchdog Timer		00	0000	0110	0100	TO,PD	
GOTO	ĸ	Go to address	2	10	1kkk	kkkk	kkkk		}
IORLW	ĸ	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	ĸ	Move literal to W	1	1 11	00xx	kkkk	kkkk		
RETFIE	•	Return from Interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN		Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	ĸ	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., NOVF FORTE, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

. *

<u>PIC 16F877</u>

Pin Diagram

н.

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/Ā	Р	S	R/W	UA	BF
bit 7							bit O

SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

In I²C Master or Slave mode:

1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)

0 = Slew rate control enabled for high speed mode (400 kHz)

CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)

SPI mode:

For CKP = 0

1 = Data transmitted on rising edge of SCK

0 = Data transmitted on falling edge of SCK

For CKP = 1

1 = Data transmitted on falling edge of SCK

0 = Data transmitted on rising edge of SCK

In I²C Master or Slave mode:

1 = input levels conform to SMBus spec

0 = input levels conform to I²C specs

D/A: Data/Address bit (I²C mode only)

1 = Indicates that the last byte received or transmitted was data

0 = Indicates that the last byte received or transmitted was address

P: STOP bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)

0 = STOP bit was not detected last

S: START bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a START bit has been detected tast (this bit is '0' on RESET)

0 = START bit was not detected last

R/W: Read/Write bit Information (I²C mode only)

This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit.

In I²C Slave mode:

1 = Read

0 = Write

In I²C Master mode:

1 = Transmit is in progress

0 = Transmit is not in progress

Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.

UA: Update Address (10-bit I²C mode only)

1 = Indicates that the user needs to update the address in the SSPADD register

0 = Address does not need to be updated

BF: Buffer Full Status bit

Receive (SPI and I²C modes):

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

Transmit (I²C mode only):

1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full

0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

Data Page 5 of 10

<u>PIC 16F877</u>

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0		
bit 7	it 7 bit 0								
Drit / bit 0 WCOL: Write Collision Detect bit Master mode: 1 = A write to SSPBUF was attempted while the I2C conditions were not valid 0 0 = No collision Slave mode: 1 = SSPBUF register is written while still transmitting the previous word (must be cleared in software) 0 0 = No collision SSPOV: Receive Overflow Indicator bit In SPI mode: 1 1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register. (Must be cleared in software.) 0 = No overflow In1 ² C mode: 1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.) 0 = No overflow SSPEN: Synchronous Serial Port Enable bit									
When enable 1 = Enables 0 = Disables $\ln l^2C \mod e$ When enable 1 = Enables 0 = Disables	ed, these pins serial port an serial port ar ed, these pins the serial port ar serial port ar	must be prop d configures s d configures d configures must be prop t and configures	perly configur SCK, SDO, S these pins as perly configur res the SDA a these pins as	ed as input or DI, and SS as I/O port pins ed as input or and SCL pins	output the source o output as the source	of the serial po	ort pins port pins		
 b = Disables serial port and configures these pins as I/O port pins CKP: Clock Polarity Select bit In SPI mode: 1 = Idle state for clock is a high level 0 = Idle state for clock is a low level In I²C Slave mode: SCK release control 1 = Enable clock 0 = Holds clock low (clock stretch). (Used to ensure data setup time.) In I²C Master mode: 									
Unused in this mode SSPM3:SSPM0: Synchronous Serial Port Mode Select bits 0000 = SPI Master mode, clock = Fosc/4 0011 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = TMR2 output/2 0100 = SPI Slave mode, clock = SCK pin. <u>SS</u> pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. <u>SS</u> pin control disabled. <u>SS</u> can be used as I/O pin. 0110 = I ² C Slave mode, 10-bit address 0111 = I ² C Slave mode, clock = Fosc / (4 * (SSPADD+1)) 1011 = I ² C Firmware Controlled Master mode (slave idle) 1110 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1111 = I ² C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled 1001, 1010, 1100, 1101 = Reserved									

Data Page 6 of 10

н матра (11)

PIC16F877/876 REGISTER FILE MAP

. •

	File Address		File Address		File Address		File Addre
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMRO	01h	OPTION REG	81h	TMR0	101h	OPTION_REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	184
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18E
PIR1	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	180
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	180
TMR1L	0Eh	PCON	8Eh	EEDATH	10Eh	Reserved ⁽²⁾	18E
TMR1H	0Fh		8Fh	EEADRH	10Fh	Reserved ⁽²⁾	18F
T1CON	10h		90h		110h		190
TMR2	11h	SSPCON2	91h		111h		191
T2CON	12h	PR2	92h		112h		192
SSPBUF	13h	SSPADD	93h		1 13h		193
SSPCON	14h	SSPSTAT	94h		114h		194
CCPR1L	15h	Salar - Allan	95h		115h		195
CCPR1H	16h		96h		116h		196
CCP1CON	17h		97h	General	117h	General	197
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199
RCREG	1Ah		9Ah		11Ah		19/
CCPR2L	1Bh		9Bh		11Bh		19E
CCPR2H	1Ch		9Ch		11Ch		190
CCP2CON	1Dh		9Dh		11Dh		190
ADRESH	1Eh	ADRESL	9Eh		11Eh		19E
ADCON0] 1Fh	ADCON1	9Fh		11Fh		19F
	20h		A0h		120h		1A(
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Exter	
96 Bytes		00 0 1 0 0	EFh		16Fh	ou bytes	1EF
	755	accesses 70h-7Fh	FOh	accesses 70h-7Fh	170h	accesses 70h - 7Fh	1F0
Bank 0	- /i /i	Bank 1	: FF()	Bank 2	17(1)	Bank 3	171

Unimplemented data memory locations, read as '0'.
 Not a physical register.

Note 1: These registers are not implemented on the PIC16F876.2: These registers are reserved, maintain these registers clear.

Data Page 7 of 10

PIC 16F877

ADCON0 REGISTER (ADDRESS: 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	唐书 · [] ·] · · · · · · · · · · · · · · ·	ADON
bit 7							bit 0

.

ADCS1: ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

- 100 = channel 4, (RA5/AN4)
- 101 = channel 5, (RE0/AN5)⁽¹⁾
- 110 = channel 6, (RE1/AN6)⁽¹⁾
- 111 = channel 7, (RE2/AN7)⁽¹⁾

GO/DONE: A/D Conversion Status bit

If ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion)
- 0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

Unimplemented: Read as '0'

ADON: A/D On bit

- 1 = A/D converter module is operating
- 0 = A/D converter module is shut-off and consumes no operating current

.

PIC 16F877

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM				PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

Unimplemented: Read as '0'

. **•**

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	A	A	A	Α	A	A	A	Α	Vod	Vss	8/0
0001	A	A	Α	Α	VREF+	Α	Α	Α	RA3	Vss	7/1
0010	D	D	D	А	A	А	Α	A	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	A	A	Α	RA3	Vss	4/1
0100	D	D	D	D	Α	D	Α	A	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	A	A	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	A	Α	Α	А	VREF+	VREF-	Α	A	RA3	RA2	6/2
1001	D	D	A	Α	A	A	Α	A	VDD	Vss	6/0
1010	D	D	Α	А	VREF+	Α	Α	Α	RA3	Vss	5/1
1011	D	D	A	Α	VREF+	VREF-	A	A	RA3	RA2	4/2
1100	D	D	D	Α	VREF+	VREF-	A	A	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	A	Α	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	A	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC 16F877

