University of Swaziland Faculty of Science Department of Electrical and Electronic Engineering Supplementary Examination 2018

Title of Paper	£ •	Control Engineering I		
Course Number	:	EE431		
Time Allowed	:	3 hrs		
Instructions	: 1. 2. 3. 4.	This paper has five questions. Answer any four questions Each question carries 25 marks Useful information is attached at the end of the question paper		

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

The paper consists of Seven (7) pages including this page

Question 1 (25 Marks)

Show that

(a) Given that the state and output equations are

$$x = Ax + Bu$$

$$y = Cx + Du$$

the transfer function $T(s) = C(sI - A)^{-1}B + D$ [5]

(b) Determine the statespace model of the following electrical circuit, given that the output is the voltage across C_1 [10]

(c) Given
$$C_1 = 0.1 F$$
, $C_2 = 10 F$, $R = 1\Omega$,
Find the transfer function of the circuit in Fig. Q.1.

Question 2 (25 Marks)

- (a) Draw the block diagram of a closed loop control system for a disk drive. [5]
- (b) Given the block diagram shown in Fig. Q.2. Determine the transfer function using block diagram reduction techniques. [10]

(c) Verify your answer in (b) by using Mason's rule

[10]

[10]

Question 3 (25 Marks)

(a) For the system shown in Fig Q.3, Find the system type, the appropriate error constant associated with the system type, and the steady-state error for a unit step input [5]

: ;

Fig Q.3

(b) Given the control system in the figure below, find the value of K so that there is 5 % error in the steady-state [5]

(c) Given the following system in state space. How many poles are on the right-hand half of the system.

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 5 \\ -5 & 3 & -6 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r$$

$$y = [0 \ 3 \ 7]x$$

(d) Determine the number of poles on the right-half plane, left-half plane and on $j\omega$ axis for the following system. Comment about system stability. [10]

$$T(s) = \frac{s^2 + 1}{s^8 + 3s^7 + 10s^6 + 24s^5 + 48s^4 + 96s^3 + 128s^2 + 192s + 128s^4}$$

Question 4 (25 Marks)

- (a) Answer the following question(i) Discuss stability in digital systems [3]
 - (ii) What causes an entire row of zeros to show up in a Routh table [2]
- (b) Show that for a unit ramp function where f(kT) = kT, the Z-transform is $\frac{Tz}{(z-1)^2}$ [10]

(c) Given the system shown in Fig. Q. 2 below.

Determine the range of the sampling interval T that will make the system stable

Fig. Q.2

[10]

1

Question 5 (25 Marks)

(a) Given the system shown below

$$G(s) = \frac{361}{s^2 + 16s + 361}$$

Find the Natural frequency of the system ω_n . Damping ratio ζ , Settling time T_s , Peak time T_p and Percentage overshoot, % OS [5]

(b) Given a feedback system whose open-loop transfer function is $G(s) = \frac{K(s+3)}{(S+5)(S+8)(s+12)}$

Where K is the feedback gain. Evaluate the system's close-loop behaviour using the root locus technique.

- (i) How many asymptotes are there in this system's root locus? What are the asymptotes angles? [2]
- (ii) Where is the asymptotes real-axis intercept? [2]
- (iii) Sketch the root locus based on the information from the previous questions. [6]
 NB: No need to annotate break-in/away points and imaginary axis intercepts, if there are any.
- (iv) If you had to recommend this system to a customer, what would you advise with respect to increasing the feedback gain K indefinitely? [3]

(c) Study the diagram below and answer the questions that follow.

i. Is it possible to tune this system to achieve a damping ratio of 0.707 Explain your answer? [3]

ii. Is it possible to achieve the following settling time. Explain your answer

1s = 1	sec	[2]
Ts = 2	sec	[2]

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance Z(s) = V(s)/I(s)	Admittance Y(s) = I(s)/V(s)
	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t)=\frac{1}{\mathcal{C}}q(t)$	$\frac{1}{Cs}$	Cs
-///- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
 Inductor	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

्रिक १९४२ **म**ि

:

ş

٠

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), G = U (mhos), L = H (henries).

Table 2

Component	Force- velocity	Force- displacement	$\frac{\text{impedance}}{Z_M(s) = F(s)/X(s)}$
$ \begin{array}{c} \text{Spring} \\ & \downarrow \\ & $	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = K x(t)	K
Viscous damper x(t) f_v	$f(t) = f_v v(t)$	$f(t) = f_v \frac{dx(t)}{dt}$	fvs
Ma = x(t) $M = f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms ²

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

Table 3

Input	Steady-state error formula	Туре О		Type 1		Туре 2	
		Static error constant	Error	Static error constant	Error	Static arror constant	Error
Step, u(t)	$\frac{1}{1+K_p}$	$K_p =$ Constant	$\frac{1}{1+K_p}$	$K_p = x$	0	$K_{\rho} = \infty$	0
Ramp, tu(t)	$\frac{1}{K_r}$	$K_v = 0$	x	K _e = Constant	$\frac{1}{K_r}$	$K_v = \infty$	¢
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_{\alpha} = 0$	x	$K_a = 0$	æ	K _a = Constant	$\frac{1}{K_a}$

Static Error Constants

For a step input, u(t),

$$e(\infty) = e_{sucp}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

For a ramp input, tu(t),

$$e(x) = e_{ramp}(x) = \frac{1}{\lim_{s \to 0} sG(s)}$$

For a parabolic input, $\frac{1}{2}t^2u(t)$,

$$e(x) = e_{\text{parabola}}(x) = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

Position constant, K_p , where

$$K_p = \lim_{s \to 0} G(s)$$

Velocity constant, K_{ν} , where

$$K_v = \lim_{s \to 0} sG(s)$$

Acceleration constant, K_a , where

$$K_{\mu} = \lim_{s \to 0} s^2 G(s)$$

$$f^{*}(t) = \sum_{k=0}^{\infty} kT\delta(t - kT)$$
$$F^{*}(s) = \sum_{k=0}^{\infty} kTe^{-kTs}$$

 $e^{-kTs} = Z^{-k}$