UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

MAIN EXAMINATION

May 2018

COURSE CODE: EE572

DURATION: 3 HOURS

INSTRUCTIONS:

- 1. There are five (5) questions in this paper. Answer any four (4) questions.
- 2. Each question carries equal marks.
- 3. Use correct notation and show all your steps clearly in any program analysis.
- 4. All programs should be sufficiently commented and indented for clarity.
- 5. Start each question in a new page.

This paper should not be opened until permission has been given by the invigilator.

This paper contains four (4) pages including this page.

[4]

Question 1

- a. What is the rationale for using layered protocols in networks? What could a possible setback of using this approach? [3]
 b. The OSI reference model is a standard model for communication in computer
- networks.
 - i. In general, what is the purpose of reference models in communication networks? [2]
 - ii. What are the responsibilities of layers 2, 4, and 7 of the OSI model?[6]
- **b.** What do encapsulation and de-encapsulation mean? Why are they required in a layered protocol stack? [3]
- c. Briefly discuss the advantages of mesh over ring topology. What is the downside of using mesh topology over ring? [5]
- d. What addresses are used in the following layers? [3]
 - Data link layer
 - Network layer
 - Transport layer
- e. Explain the difference between error correction and detection. Give examples where each of the approaches would be suitable. [3]

Question 2

- a. If a binary signal is sent over a 3 Khz channel whose signal to noise ratio is 20dB what is the maximum achievable data rate? [3]
- **b.** A user can directly connect to a server through either long-range wireless or twistedpair cable for transmitting a 1500 bytes file. The transmission rates of the wireless and wired media are 2 and 100Mbps, respectively. Assume the propagation speed is $3x10^8$ m/s for wireless and $2x10^8$ for twisted pair. If the user is located 2 km away from the server, what is the latency when using each of the two technologies? [4]
- c. Sketch the NRZI and Manchester encoding for the following bit sequence: 100111110010001.
- **d.** What are the benefits of using the 4B/5B encoding scheme over Manchester encoding? [3]
- e. For the generator polynomial G = 110011 and the data bits (message) M = 11100011 find the CRC bits and the transmitted code-word. [7]
- **f.** Given that a message is represented by the bit pattern shown below, answer the following:

1010 0111 0101 1001

	ar an	n at su ^t ên
	i. Define the matrix for two dimensional even parity scheme.	[2]
	ii. Suppose a bit flip occurs whilst the message is in transit, explain how scheme resolves such an error.	the [2]
Questi	ion 3	,
a.	Why does collision occur in CSMA if all nodes perform carrier sensing before transmission?	ore [2]
b.	What is the address space size of the following? i. IPV4 address ii. MAC address	[2]
c.	Describe the hidden station and exposed station problem found in wireless r	
	Will at any the found income of the subscript of William in it successing for a subscript of	[4]
d.	What are the functions performed by a router? Why is it necessary for a rou know all possible routes within a network?	[2]
e.	A company has just been assigned the prefix 130.0.0/16. How many subm	ets and
	hosts per subnet can be created with a subnet mask of 255.255.128.0?	[4]
f.	In a block address, we know the IP address of one host is 182.44.82.16/26. The first address (i.e. network address) and last address in this block?	What is [4]
g.	Describe the count to infinity problem in distance vector routing.	[3]
h.	State the basic differences between Dijkstra's and distance vector routing a	gorithms. [4]
Quest	tion 4	
a.	The IPV4 address space is considered too small to accommodate future integrowth: give three reasons for this notion.	ernet [3]
b.	Briefly explain the principle of operation of ICMP.	[3]
c.	Briefly describe how Network Address Translation (NAT) works. You may	2 2
-	the operation using a diagram.	[4]
d.		[3]
e.	Discuss the challenges and solutions related to the interoperability of IPV6	
f.	Define the following terms:	[6] [4]
	- Split horizon	ι')
	- Poison reverse	

202

3

r.

DB

- and the second second
- g. Explain how traceroute repurposes the time to live field in the IP packet header? [2]

Question 5.

- **a.** Briefly describe how the address resolution protocol (ARP) work. [4]
- **b.** Consider sending a 1,600 byte datagram into a link that has a maximum transmission unit (MTU) of 500 bytes. Suppose the original datagram is stamped with the identification number 291.
 - i. How many fragments are generated? [2]
 - ii. What are the values in the various fields in the IP packets generated related to fragmentation? [6]
- **c.** Suppose the message shown below is transmitted together with a 1s complement checksum for error detection at the receiver:
 - i. Compute the checksum of the message. [4]
 - ii. How will the receiver detect errors with this method? [1]

$01010011 \ 01100110 \ 01110100$

d. Consider a packet switched network using 8 bit host addresses. Suppose a router uses longest prefix matching and has the following forwarding table:

Prefix Match	Interface
11	0
101	1
100	2
Otherwise	3

For each of the four interfaces, give the associated range of destination host addresses and the number of addresses in the range. [8]

End of paper