UNIVERSITY OF SWAZILAND

MAIN EXAMINATION, SECOND SEMESTER MAY 2018

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: INTRODUCTION TO PROGRAMMABLE ARRAYS AND MICROCONTROLLERS

COURSE CODE: EEE324

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are five questions in this paper. Answer any FOUR questions. Each question carries 25 marks.
- 2. If you think not enough data has been given in any question, you may assume any reasonable values stating your assumptions in each case.
- 3. You may find some useful data at the end of the paper.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (6) PAGES INCLUDING THIS PAGE

QUESTION ONE (25 marks)

(a) State what is meant by IK x 4 RAM?
Show with the aid of a clear diagram, how you are going to implement a 4K x 4
RAM using 1K x 4 RAM chips.
Assume that the 1K x 4 RAM chips have address, data input, data output (3-state), enable and *R/W* lines.

(10 marks)

(b) Implement the logic functions A(x, y, z) = Σ (3, 5, 6, 7) and
 B(x, y, z) = Σ (1, 2, 3, 5) using a PLA with four product terms. Provide the programming table and draw the connection map. Show the steps of your derivation. What is the minimum size of the PLA required?

(15 marks)

OUESTION TWO (25 marks)

(a) State briefly the features of a CISC type microcontroller.

(4 marks)

n an An Anna Anna Anna

The second state and the second second second second

(b) Using a block diagram, show the organization of a microprocessor based system of your choice and identify the use of each block.

(6 marks)

(c) What are the type of memories available in a 16F84A and indicate their use in programming.

(4 marks)

- (d) Answer the following with respect to 16F84A.
 - Events that will take place in the microcontroller when a subroutine is called.

(5 marks)

Machine codes (op-codes) for the following.
 btfsc status, 2
 retlw .140
 movf intcon, w

(6 marks)

QUESTION THREE (25 marks)

The PortA(1) of a 16F84A is required to drive a LED in such a way that it is ON and OFF for 1.2 seconds respectively. This process should continue repeatedly. Assume that the 16F84A is used with a 45kHz clock in RC mode.

 (a) Draw the complete hardware circuit for this application indicating the pin numbers of 16F84A and stating the functions of the external components connected. No need to provide the values of R and C of the oscillator.

(5 marks)

and the set of the

(b) Draw a flow chart for this system which can be an aid to write a program. You need to show the derivation of any values used.

(10 marks)

- (c) Write the assembly code for the following sections of a program based on your flow chart stating any assumptions.
 - Configuration of ports and other important registers.

(4 marks)

• Section / subroutine producing the delay of 1.2 seconds.

(6 marks)

QUESTION FOUR (25 marks)

- (a) A program is written to use a 16F84A microcontroller.
 - (i) The value of INTCON register at the initialization is *E8h*. Explain what is explained by this configuration.

(4 marks)

.

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

(ii) When running the program, if a TMR0 interrupt occurred, what will be the value of INTCON register?

(4 marks)

(iii) Assume that the program needs to generate a regular interrupt in every 5ms.
 Show the settings needed in relevant registers in the program to achieve this, supported with your calculations. Assume that a 3.277MHz crystal oscillator is used as the clock.

(7 marks)

- (b) An application is designed to uses a PIC 16F877 microcontroller with a 8*MHz* crystal oscillator.
 - (i) The Analog to Digital Converter (ADC) of the device is to be used only with three analog inputs with an internal voltage reference. Show the settings of the relevant registers giving reasons. Assume that the channel 1 is selected and the ADC is turned on but not started to convert. You may assume that the ADC output is left justified.

(6 marks)

(ii) What is the relevance of minimum acquisition of a ADC?Indicate how it is incorporated in a program using 16F877.

(4 marks)

QUESTION FIVE (25 marks)

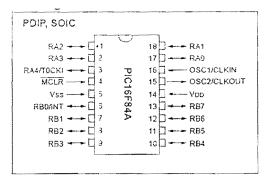
- (a) A serial device supporting SPI is connected to a PIC 16F877 microcontroller.
 - (i) Draw a circuit diagram to show the interconnections of the device and the microcontroller. The pins of the device are, DIN (data in), DOUT (data out), SCLK (serial clock) and CS (chip select). Mark only the relevant pin numbers of the microcontroller used for the interconnection.

(6 marks)

4 at 1

(ii) State briefly in point form, the sequence of events in the data transfer between the two devices.

(9 marks)


(b) Assume that the serial device has a maximum data rate of 150kHz and the microcontroller is running on a 8MHz crystal oscillator.

Show the settings of the SSPCON, SSPSTAT registers. Your settings may include, high idle state of clock, data sampling at the middle of the bit period and the data transfers are on the falling edge of the clock.

(10 marks)

PIC 16F84A

F

File Addre	SE-	F	le Address
90h	indirect addr (1)	Indirect addr. ⁽¹⁾	80h
Oth	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
- 0 6h	PORTB	TRISB	86h
07h	11 第二十二章	。由全心的	87h
08h	EEDATA	EECON1	88h
09h	EEADR	EECON2 ⁽¹⁾	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	6Bh
OCh	68 General Purpose Registers (SRAM)	Mapped (accesses) in Bank 0	8Ch
4Fh 50h		1558247. 9 887	CFh D0h

4.5

STATUS REGISTER (ADDRESS 03h, 83h)

R/V	V-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x
IR	P	RP1	RP0	TO	PD	Z	DC	С
bit 7								bit D

Unimplemented: Maintain as '0'

RP0: Register Bank Select bits (used for direct addressing)

01 = Bank 1 (80h - FFh)

- 00 = Bank 0 (00h 7Fh)
- TO: Time-out bit
- 1 = After power-up, CLRWDT instruction, or SLEEP instruction
- 0 = A WDT time-out occurred
- PD: Power-down bit
- 1 = After power-up or by the CLRWDT instruction
- 0 = By execution of the SLEEP instruction
- Z: Zero bit
- 1 = The result of an arithmetic or logic operation is zero

0 = The result of an anthmetic or logic operation is not zero

DC: Digit carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

1 = A carry-out from the 4th low order bit of the result occurred

0 = No carry-out from the 4th low order bit of the result

C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) (for borrow, the polarity is reversed)

- 1 = A carry-out from the Most Significant bit of the result occurred
- 0 = No carry-out from the Most Significant bit of the result occurred
 - Note: A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.

Data Page 1 of 10

OPTION REGISTER (ADDRESS 81h)

R/W-1	R/W-1	R/W-1.	R.W-1	RAV-1	R-1V-1	R/W-1	R/V-1	
REPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	
Lit 7							bit 0	

RBPU: PORTB Pull-up Enable bit

1 = PORTB pull-ups are disabled

0 = PORTB pull-ups are enabled by individual port latch values

INTEDG: Interrupt Edge Select bit

1 = Interrupt on rising edge of RB0/INT pin

0 = Interrupt on falling edge of RB0/INT pin

T0CS: TMR0 Clock Source Select bit

1 = Transition on RA4/T0CKI pin

c = Internal instruction cycle clock (CLKOUT)

TOSE: TMR0 Source Edge Select bit

1 = Increment on high-to-low transition on RA4/T0CKI pin

0 = Increment on low-to-high transition on RA4/T0CKI pin

PSA: Prescaler Assignment bit

1 = Prescaler is assigned to the WDT

0 = Prescaler is assigned to the Timer0 module

PS2:PS0: Prescaler Rate Select bits

Bit Value TMR0 Rate WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1:256	1 : 128

INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0	R/W-x						
GIE	EEIE	TOIE	INTE	RBIE	TOIF	INTE	RBIF
bit 7							bit 0

GIE: Global Interrupt Enable bit

1 = Enables all unmasked interrupts

o = Disables all interrupts

EEIE: EE Write Complete Interrupt Enable bit

1 = Enables the EE Write Complete interrupts

0 = Disables the EE Write Complete interrupt

T0IE: TMR0 Overflow Interrupt Enable bit

1 = Enables the TMR0 interrupt

0 = Disables the TMR0 interrupt

INTE: RB0/INT External Interrupt Enable bit

1 = Enables the RB0/INT external interrupt

0 = Disables the RB0/INT external interrupt

RBIE: RB Port Change Interrupt Enable bit

1 = Enables the RB port change interrupt

0 = Disables the RB port change interrupt

T0IF: TMR0 Overflow Interrupt Flag bit

1 = TMR0 register has overflowed (must be cleared in software)

0 = TMR0 register did not overflow

INTF: RB0/INT External Interrupt Flag bit

1 = The RB0/INT external interrupt occurred (must be cleared in software)

0 = The RB0/INT external interrupt did not occur

RBIF: RB Port Change Interrupt Flag bit

1 = At least one of the RB7;RB4 pins changed state (must be cleared in software)

0 = None of the RB7:RB4 pins have changed state

Data Page 2 of 10

16F84A and 16F877

Mnemonic,			Cycles		14-Bit (Opcode		Status	
Opera		Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE REGIS	TER OPE	RATIO	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfif	1111	C.DC.Z	1,2
ANDWF	f, d	AND W with f	1	60	0101	díťí	fiif	Z	1,2
CLRF	t	Clear 1	1	00	0001	1111,	fff	Z	2
CLRW	-	Clear W	1	00	0001	8xxxx	XXXXX	Z	
COMF	1, d	Complement f	1	00	1001	dííí	ffíĭ	Z	1,2
DECF	ſ, d	Decrement f	1	00	0011	dííí	ffff	Z	1,2
DECFSZ	ſ, d	Decrement f, Skip if 0	1 (2)	00	1011	dfff	iiii		1,2,3
INCF	f, d	increment f	1	00	1010	dífi	ffff	Z	1,2
INCFSZ	I, d	Increment I, Skip if 0	1 (2)	00	1111	dfīf	fíff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	íííí	Z	1,2
MOVE	1, d	Move f	1	00	1000	dííí	ffff	Z	1,2
MOVWF	t	Move W to f	1	00	0000	lfff	1111		
NOP	-	No Operation	1 00 0000 0xx0 0000						
RLF	1, d	Rotate Left f through Carry	1	00	00 1101 dfff ffff			С	1,2
RRF	f, d	Rotate Right 1 through Carry	1	00 1100 dfff ffff			ffff	с	1,2
SUBWF	1, d	Subtract W from f	1	00	0010	dfff	<u>ffff</u>	C,DC,Z	1,2
SWAPF	I, C	Swap nibbles in f	1	00	1110	dfff	ttit		1.2
XORWF	1, d	Exclusive OR W with 1	1	00	0110	dfff	fiff	Z	1,2
		BIT-ORIENTED FILE REGIST	ER OPEF	RATIO	1S				
BCF	f, b	Bit Clear f	1	01	0055	bifi	ffff		1,2
BSF	1, D	Bit Set f	1	01	01bb	bfff	IIII		1,2
BTFSC	1, b	Bit Test f, Skip If Clear	1(2)	01	10bb	bĭíí	titt		3
BTFSS	f, b	Bit Test I, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONTROL	OPERAT	IONS			. <u></u>		
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C.DC.Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		1
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	ĸ	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	ĸ	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	ĸ	Return with literal in W	2	11	01xx	k k k k	kkkk	1	
RETURN		Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO.PD	
SUBLW	ĸ	Subtract W from literal	1	11				C.DC.Z	1
XORLW	ĸ	Exclusive OR literal with W	1	11	1010		kkkk	Z	
L				1				1	J

Note 1: When an I/O register is modified as a function of itself (e.g., NOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if

a trias instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.
 If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

.

Pin Diagram

	1	$\overline{\bigcirc}$	40 - RB7/PGD
RAO/ANC	2		39 🗍 🛶 RB&PGC
RA1/AN1	3		38 🗋 🛶 🖛 RB5
RAZVANZAVREF-	4		37 🗖 🛶 🖌 R64
RA3/AN3/VREF+	5		36 🗋 🛶 🖌 RB3/PGM
RA4/TOCKI	6		35 🗍 🛶 RB2
RASIANHISS	7	**	34 🗍 🖛 🗕 RB1
REO/RD/ANS	8	74	33 🗍 🛶 RED/INT
REINRANE	9	/8	32 🗖 🛥 🛶 VDD
RE2/CS/AN7 +	10	877/87	31 🗋 🛥 🛶 VSS
	11	8	30 - RD7/PSP7
Vss [12	6	29 RD6/PSP6
OSC1/CLKIN	13	PIC1	28 - RD5/PSP5
OSC2/CLKOUT	14	ž	27 🗍 🛶 🖌 RD4/PSP4
RC0/T1OSO/T1CKI 🔫 🗕 🗖	15		26 RC7/RX/DT
RC1/T1OSVCCP2	16		25 - RO6/TX/CK
RC2/CCP1	17		24 RC5/SDO
RC3/SCK/SCL	18		23 - RC4/SDI/SD
RD0/PSP0	19		22 - RD3/PSP3
RD1/PSP1	20		21 RD2/PSP2

Data Page 4 of 10

.

PIC 16F877

and the second second

SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE	D/Ā	P	S	RÃ	UA	БF	
pit 7	1						bit 0	

SMP: Sample bit

SPI Master mode:

1 = Input data sampled at end of data output time

0 = Input data sampled at middle of data output time

SPI Slave mode:

SMP must be cleared when SPI is used in slave mode

In I²C Master or Slave mode:

1 = Slew rate control disabled for standard speed mode (100 kHz and 1 MHz)

0 = Slew rate control enabled for high speed mode (400 kHz)

CKE: SPI Clock Edge Select (Figure 9-2, Figure 9-3 and Figure 9-4)

SPI_mode:

For CKP = 0

1 = Data transmitted on rising edge of SCK

0 = Data transmitted on falling edge of SCK

For CKP = 1

1 = Data transmitted on falling edge of SCK

0 = Data transmitted on rising edge of SCK

In I²C Master or Slave mode:

1 = Input levels conform to SMBus spec

0 =Input levels conform to I^2C specs

D/A: Data/Address bit (I²C mode only)

1 = Indicates that the last byte received or transmitted was data

0 = Indicates that the last byte received or transmitted was address

P: STOP bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)

0 = STOP bit was not detected last

S: START bit

(I²C mode only. This bit is cleared when the MSSP module is disabled, SSPEN is cleared.)

1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)

0 = START bit was not detected last

R/W: Read/Write bit Information (I²C mode only)

This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit or not ACK bit.

In I²C Slave mode:

1 = Read

0 = Write

In I²C Master mode:

1 = Transmit is in progress

0 = Transmit is not in progress

Logical OR of this bit with SEN, RSEN, PEN, RCEN, or ACKEN will indicate if the MSSP is in IDLE mode.

UA: Update Address (10-bit I²C mode only)

1 = Indicates that the user needs to update the address in the SSPADD register

0 = Address does not need to be updated

BF: Buffer Full Status bit

Receive (SPI and I²C modes):

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

Transmit (I²C mode only):

1 = Data transmit in progress (does not include the ACK and STOP bits), SSPBUF is full

0 = Data transmit complete (does not include the ACK and STOP bits), SSPBUF is empty

Data Page 5 of 10

SSPCON: SYNC SERIAL PORT CONTROL REGISTER (ADDRESS 14h)

R/W-0	R/W-D						
WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0
b:t 7				-			bit 0

WCOL: Write Collision Detect bit

Master mode:

1 = A write to SSPBUF was attempted while the I2C conditions were not valid

0 = No collision

Slave mode:

1 = SSPBUF register is written while still transmitting the previous word (must be cleared in software)

0 = No collision

SSPOV: Receive Overflow Indicator bit

In SPI mode:

1 = A new byte is received while SSPBUF holds previous data. Data in SSPSR is lost on overflow. In Slave mode, the user must read the SSPBUF, even if only transmitting data, to avoid overflows. In Master mode, the overflow bit is not set, since each operation is initiated by writing to the SSPBUF register. (Must be cleared in software.)

0 = No overflow

In I²C mode:

1 = A byte is received while the SSPBUF is holding the previous byte. SSPOV is a "don't care" in Transmit mode. (Must be cleared in software.)

0 = No overflow

SSPEN: Synchronous Serial Port Enable bit

In SPI mode,

When enabled, these pins must be properly configured as input or output

1 = Enables serial port and configures SCK, SDO, SDI, and SS as the source of the serial port pins

0 = Disables serial port and configures these pins as I/O port pins

In I²C mode,

When enabled, these pins must be properly configured as input or output

1 = Enables the serial port and configures the SDA and SCL pins as the source of the serial port pins

0 = Disables serial port and configures these pins as I/O port pins

CKP: Clock Polarity Select bit

In SPI mode:

1 = Idle state for clock is a high level

0 = Idle state for clock is a low level

In I²C Stave mode:

SCK release control

1 = Enable clock

0 = Holds clock low (clock stretch). (Used to ensure data setup time.)

In I²C Master mode:

Unused in this mode

SSPM3:SSPM0: Synchronous Serial Port Mode Select bits

0000 = SPI Master mode, clock = Fosc/4

0001 = SPI Master mode, clock = Fosc/16

0010 = SPI Master mode, clock = Fosc/64

0011 = SPI Master mode, clock = TMR2 output/2

0100 = SPI Slave mode, clock = SCK pin. SS pin control enabled.

0101 = SPI Slave mode, clock = SCK pin. SS pin control disabled. SS can be used as I/O pin.

0110 = I^2C Slave mode, 7-bit address

 $0111 = I^2C$ Slave mode, 10-bit address

 $1000 = l^2C$ Master mode, clock = Fosc / (4 * (SSPADD+1))

 $1011 = I^2C$ Finnware Controlled Master mode (slave idle)

1110 = I²C Firmware Controlled Master mode, 7-bit address with START and STOP bit interrupts enabled

1111 = I^2C Firmware Controlled Master mode, 10-bit address with START and STOP bit interrupts enabled

1001, 1010, 1100, 1101 = Reserved

Data Page 6 of 10

n an an Arthread and Art

PIC16F877/876 REGISTER FILE MAP

,	File Address	ļ	File Address	,	File Address	,	File Address
Indirect addr. ^(*)	00h	Indirect addr.(*)	80h	Indirect addr. ⁽¹⁾	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	10 Ih	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h	·清秋秋天歌/24	105h	计学会行教育	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	06h	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIRI	0Ch	PIE1	8Ch	EEDATA	10Ch	EECON1	18Ch
PIR2	0Dh	PIE2	8Dh	EEADR	10Dh	EECON2	18Dh
TMRIL	OEh	PCON	8Eh	EEDATH	10Eh	ARESERVEOR	18Eh
TMR1H	OFh	が開い	8Fh	EEADRH	10Fh	Reservedo	18Fh
T1CON	10h		90h		1 10h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		19 3h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		1 15h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General Purpose	117h	General Purpose	197h
RCSTA	18h	TXSTA	98h	Register	118h	Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah		11Ah		19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh	H. M. S. S. M. S. S. S.	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCOND	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFh
	7Fh	accesses 70h-7Fh	FOh	accesses 70h-7Fh	170h 17Fh	accesses 70h - 7Fh	1F0h 1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

Note 1: These registers are not implemented on the PIC16F876.2: These registers are reserved, maintain these registers clear.

Data Page 7 of 10

.

<u>PIC 16F877</u>

ADCON0 REGISTER (ADDRESS: 1Fh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
	ADCS1	ADCS0	CHS2	CHS1	CHSO	GO/DONE		ADON
-	bit 7						-	bît 0

ADCS1:ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

CHS2:CHS0: Analog Channel Select bits

000	=	channel	0,	(RA0/AND)
001	=	channel	1,	(RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

 $101 = \text{channel 5, (RE0/AN5)}^{(1)}$

 $110 = \text{channel 6, } (\text{RE1/AN6})^{(1)}$

 $111 = \text{channel 7}, (\text{RE2/AN7})^{(1)}$

GO/DONE: A/D Conversion Status bit

If ADON = 1:

1 = A/D conversion in progress (setting this bit starts the A/D conversion)

0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)

Unimplemented: Read as '0'

ADON: A/D On bit

1 = A/D converter module is operating

0 = A/D converter module is shut-off and consumes no operating current

Data Page 8 of 10

ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	RiW-0	R/W-0	R/W-0
ADFM		$\frac{1}{2} = -\frac{1}{2} \frac{1}{\sqrt{2}} \frac$		PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

ADFM: A/D Result Format Select bit

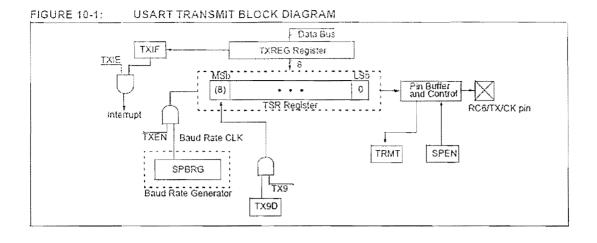
1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'.

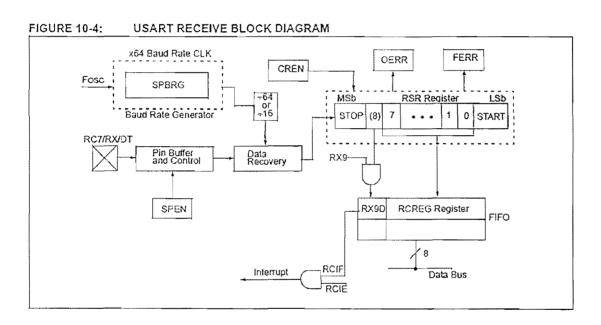
0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

Unimplemented: Read as '0'

PCFG3:PCFG0: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	А	A	A	А	A	A	А	A	VDD	Vss	8/0
0001	A	А	A	А	VREF+	А	А	А	RA3	Vss	7/1
0010	D	D	D	A	А	А	А	A	VDD	Vss	5/0
0011	D	D	D	А	VREF+	А	А	А	RA3	Vss	4/1
0100	D	D	D	D	A	D	А	А	Vod	Vss	3/0
0101	D	D	D	D	VREF+	D	A	А	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	A	A	A	A	VREF+	VREF-	А	A	RA3	RA2	6/2
1001	D	D	А	A	А	A	A	A	VDD	Vss	6/0
1010	D	Ð	А	А	VREF+	A	А	А	RA3	Vss	5/1
1011	D	D	A	А	VREF+	VREF-	А	A	RA3	RA2	4/2
1100	D	D	D	А	VREF+	VREF-	А	A	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	А	A	RA3	RA2	2/2
1110	Ð	D	D	D	D	D	D	A	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	A	RA3	RA2	1/2


A = Analog input D = Digital I/O


Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

PIC 16F877

Data Page 10 of 10