UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION MAY 2019

TITLE OF PAPER:

ELECTROMAGNETIC FIELDS I

COURSE CODE:

EE341/EEE342

TIME ALLOWED:

THREE HOURS

INSTRUCTIONS:

- 1. Answer all five (5) questions
- 2. Each question carries 20 marks.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- A) A certain electromagnetic wave travelling in seawater was observed to have an amplitude of 100 (V/m) at a depth of 10 m, and an amplitude of 80 (V/m) at a depth of 100m. What is the attenuation constant of seawater? (3 marks)
- B) A laser beam of light propagating through the atmosphere is characterized by an electric field given by $E(x,t) = 100\cos(3\pi \times 10^{15} t 10^7 x)$ (V/m), where x is the distance in from the source in meters. Determine the direction of the wave travel and phase velocity. (4 marks)
- C) A lossless 50 transmission line is terminated in a load with $Z_L = (50 + j25) \Omega$. Calculate the following:
 - (i) The reflection coefficient Γ ,

(3 marks)

(ii) The standing-wave ratio,

(2 marks)

D) For a 75 Ω lossless transmission line which is 0.2 λ -long and having voltage reflection coefficient equal to $0.4e^{j45^0}$ at its load, calculate its input admittance. (8 marks)

QUESTION 2

- A) What are the three branches and associated conditions of electromagnetics? [6 marks]
- B) Determine the divergence of the vector field $E = \hat{x}4x^2z + \hat{y}2yz + \hat{z}x^2z$ and evaluate it at (4, 2, 3).
- C) Apply Coulomb's law to find the electric force acting on $q_2 = 20 \,\mu$ C charge located at point (4, 3, 5) due to $q_1 = 20 \,\mu$ C charge located at point (1, 1, 1) when both charges are in free space with Cartesian coordinates, and all distances in meters. [9 marks]

QUESTION 3

- A) An antenna with a load impedance $Z_L = (75 + j 45) \Omega$ is connected to a transmitter through a 50Ω lossless transmission line. If under matched conditions the transmitter can deliver 20 W to the load, how much power can it deliver to the load under unmatched conditions? (9 marks)
- B) A voltage source given by

$$v_s(t) = 10\cos(2\pi \times 10^4 t - 45)$$
 (V)

is connected to a series RC load. If R = $10 \text{K}\Omega$ and C = 0.5627 nF, obtain the **phasor** current \widetilde{I}_s . (8 marks)

C) Find the Laplacian of the function $V = 4x^2y^2z^3$

(3 marks)

QUESTION 4

- A) Explain how to determine of the direction of wave propagation of a traveling wave when the wave is expressed in the time domain, and in the phasor domain. (10 marks)
- B) Why is vector algebra and calculus necessary for studying electromagnetic primary quantities? (6 marks)
- C) What is the physical meaning of the divergence of an electric field vector? (4 marks)

QUESTION 5

- A) What are electromagnetic constitutive parameters of a material? (3 marks)
- B) What classifies a material as homogeneous, a perfect dielectric, isotropic, and a perfect conductor? (4 marks)
- C) What is the difference between magnetization curves of hard and soft ferromagnetic materials? (4 marks)
- D) "Electromagnetic force consists of an electrical component and a magnetic component.

 The electrical force is similar to gravitational force".
 - (i) Give the fundamental differences between electric and magnetic fields. (8 marks)
 - (ii) State why electrical and gravitational fields are said to be similar. (1 mark)