UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

MAIN EXAMINATION MAY 2019

TITLE OF PAPER: INSTRUMENTATION SYSTEMS

COURSE CODE:

EEE428

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. Answer all five (5) questions
- 2. Each question carries 20 marks.
- 3. Marks for different sections are shown in the right-hand margin.

This paper has 3 pages including this page.

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- A) For a general form of measurement systems
 - (i) Draw a block diagram showing.

(3 marks)

(ii) Give an explanation of all the various parts of your block diagram.

(9 marks)

B) A thermocouple gives an output of 0.4mV/°C. What would be size of an ADC required to be used to measure temperature from 0 - 100°C with a resolution of 0.2°C. (8 marks)

QUESTION 2

An a.c. bridge has in arm AB a $0.2~\mu F$ capacitor, in arm BC 500Ω resistor, in arm CD a 0.1H inductor in series with a 50Ω resistor and in arm DA an unknown inductor. The unknown inductor can be considered to be a pure inductance in series with a pure resistance. What is the value of this inductance and resistance if the bridge is balanced at a frequency of 1 kHz? (20 marks)

QUESTION 3

- A) Most transducers produce a voltage output. However, if the measured signal is to be transmitted, then the output voltage of a transducer must be converted to current. Draw a simple circuit having a transducer and a voltage to current converter to illustrate how current can be used as the signal transmission variable. Label all components of your circuit and all signals. (12 marks)
- B) An optical position encoder used on a robot arm axis have a 10:1 gear ratio, optical disk with 36-slit disk, and a 10-bit binary counter.

Calculate

(a) the resolution of the optical position encoder,

(2 marks)

- (b) the maximum allowable shaft motion to ensure that the counter never over-range, and (5 marks)
- (c) the amount of shaft movement represented by a binary number 0110111.

(1 marks)

QUESTION 4

- A) In <u>Figure 3</u>, the amplifier-valve-positioner part of the system gives 12mm displacement per millivolt change in input. The feedback loop gives 0.08mV Explain why instrumentation amplifiers are said to special-purpose amplifiers dedicated to instrumentation applications. per millimeter change in displacement. What will be the instantaneous error signal produced when the reference signal is suddenly changed by 10mV?

 (6 marks)
- B) What is the difference between photovoltaic and photoconductive cell sensing devices? (4 marks)
- C) Explain why instrumentation amplifiers are said to special-purpose amplifiers dedicated to instrumentation applications. (6 marks)
- D) In the design of a measuring instrument, when is a zero-span-inverting amplifier useful? Give a general equation that relates the input and output of a zero-span-inverting amplifier. (4 marks)

QUESTION 5

Explain how linearization of a sensing device can be made by

(a) Linearization using digital software	(10 marks)
(b) Linearization using digital (logic) hardware	(3 marks)
(c) Linearization using analog circuitry.	(7 marks)