University Of Eswatini Faculty of Science and Engineering Department of Electrical and Electronic Engineering

Main Examination, December 2018

TITLE of Paper: Course Number:	Analogue Electronics I / Analogue Design I EEE321 / EE321
Time allowed 3 ho	urs
Instructions:	
1. EE321 Stude	ents answer any Four (4) questions in Section A
2. EEE321 stud	dents answer any Three (3) questions in Section A and One (1) question in
Section B.	
3. Each questi	on carries 25 marks.
4. Marks for e	ach question are shown at the right hand margin.
This paper contain	s 7 pages including this one.

Section A

Question 1

- a) State the three modes of operation of an NPN transistor and tabulate the bias conditions of the junctions.
- b) For the circuit **Figure 1** below determine the node currents I_C , I_B and I_E and determine the mode of operation of the transistor for $\beta = 100$.
- c) Draw the voltage transfer characteristics (VTC) of a MOSFET transistor and explain how the value of v_{GS} in relation to V_t affects the changes in the modes of operation of the transistor. Write the values of V_{DS} and i_D in the saturation region. [5]
- d) Describe how to find the current i_D of a MOSFET in terms of the charge Q per unit length and the electron drift velocity. Assume a small v_{DS} is applied to the transistor. [6]

Figure 1

Question 2

a) The circuit Figure 2(a) is the Common Gate amplifier

Figure 2 (a)

Find:

- i) Input resistance, R_{in} , the output resistance, R_o , and the open circuit gain A_{vo} [6]
- ii) $G_V = \frac{v_0}{v_{sig}}$, assuming R_L is connected at the output. [6]
- b) Given the circuit shown in Figure 2(b) below,
 - a. Draw the small signal equivalent circuit [3]
 - b. Find R_{in} [6]
 - c. Show that it has a gain of unity hence the name "Emitter follower" [4]

Figure 2 (b)

Question 3

Consider the Common-Source amplifier circuit, Figure 3 below.

- a) Draw the small signal equivalent circuit. [3]
- b) Find
 - i) The input resistance R_{in} [1]
 - ii) The voltage gain G_V [4]
 - iii) The output resistance R_{out} [2]

Figure 3

- c) For a Common-Emitter amplifier with Emitter resistance, R_e
 - a. Draw the circuit diagram and its equivalent circuit after using the *T-model* to replace the transistor.
 - b. Find the following
 - i. The input resistance R_{in} , [4]
 - ii. The output resistance R_{out} and [2]
 - iii. The overall gain G_{ν} given that a load resistance R_L is connected at the output. [6]

Question 4

- a) A BJT operating at $I_C=2mA$ has $C_\mu=1pF$ $C_\pi=10pF$ and $\beta=150$. Calculate:
 - i) f_T [4]
 - ii) f_{β} [4]
- b) For the op-amp inverting integrator circuit,
 - i) Draw and label the circuit diagram. [3]
 - ii) Determine the voltage across the capacitor. [4]
 - iii) Determine output voltage. [2]

- c) For a 0.08 μm process technology for which $t_{ox}=15nm$ and $\mu_n=550cm^2/V$. s. Given that the transistor is operating in saturation with $I_D=0.2mA$ with $\frac{W}{L}=20$, Find
 - i) C_{ox} [2]
 - ii) k'_n [2]
 - iii) V_{ov} [4]

Question 5

Consider the common-emitter amplifier shown in **Figure 5** under the following conditions: $R_{sig} = 5k\Omega$, $R_1 = 33k\Omega$, $R_2 = 22k\Omega$, $R_E = 3.9k\Omega$, $R_C = 4.7k\Omega$, $R_L = 5.6k\Omega$, $V_{CC} = 5V$, $r_0 = 300k\Omega$, $\beta = 120$, dc collector current, $I_C = 0.3mA$, $V_T = 25mV$, $C_\mu = 1$ pF, $f_T = 700MHz$, $r_x = 50\Omega$, Find

- a) C_{π} [5]
- b) The mid-band voltage gain A_M [8]
- c) The input capacitance C_{in} [4]
- d) The effective source resistance R'_{sig} [4]
- e) The upper-3dB frequency f_H [4]

Figure 5

Section B

Question 6

a) Given the half wave rectifier, Figure 6, below

Figure 6 i) Find the RMS value of the load voltage [4] ii) Find the RMS value of the load current [4] iii) Given that the current $i(t) = 5\sin(2\pi 100t)$ and the voltage is $v_0 = 10 \sin(2\pi 300t)$ find the values of the RMS voltage and RMS current above. [4] iv) Show that the efficiency of the rectifier above $\eta = 0.405$ [4] b) State three types of regulators [3] c) List and describe three elements of a regulator [6] Question 7 a) In the circuit Figure 7 below i) Identify the type of regulator. [2] ii) Identify the four elements that make up a regulator. [4] iii) Find the output voltage.

[3]

Figure 7

b) For a full wave rectifier

i) Find the mean value of the load current and the load voltage
ii) Show that its efficiency is 0.81

c) Describe the operation of a shunt regulator

[6]