UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

DIGITAL SYSTEMS

COURSE CODE – EEE323

MAIN EXAMINATION

DECEMBER 2018

DURATION OF THE EXAMINATION - 3 HOURS

INSTRUCTIONS TO STUDENTS

- 1. There are FIVE questions in this paper. Answer any FOUR questions.
- 2. Each question caries 25 marks.
- 3. Show all your steps clearly in any calculations/work.
- 4. Start each new question on a fresh page.
- 5. Make sure that this exam contains 3 pages including this one.

DO NOT OPEN THIS PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION ONE (25 marks)

- (a) (8 pts) Perform subtraction on the following unsigned binary numbers using 1's and 2's complement of the subtrahend.
 - (i) 11010 1101
 - (ii) 1000 110000
- (b) (6 pts) Find the maxterm expansion for F = xy + x'z.
- (c) (5 pts) Simplify $f(x, y, z) = \prod (1,4,5,6)$ to a product of 2 sums.
- (d) (6 pts) Represent decimal 6137 in
 - (i) BCD
 - (ii) Excess-3 code
 - (iii) 6311 code

QUESTION TWO (25 marks)

- a) (10 pts) For the function $f(A, B, C, D) = \sum (1,3,7,11,15), d(A, B, C, D) = \sum (0,2,5),$
 - (i) find a minimum sum-of-products expression,
 - (ii) Find a minimum product-of-sums expression.
- b) (6 pts) Indicate how a NOR gate can be used to implement:
 - (i) An Inverter:
 - (ii) An OR Gate:
 - (iii) An AND Gate:
- c) (9 pts) Implement the following Boolean function F, together with the don't-care conditions d, using no more than two NOR gates:

$$F(A, B, C, D) = \sum (2, 4, 6, 10, 12)$$

$$d(A, B, C, D) = \sum (0, 8, 9, 13)$$

Assume that both the normal and complement inputs are available.

QUESTION THREE (25 marks)

(a) (7 pts) Implement the following Boolean function with a multiplexer:

$$F(A,B,C,D) = \sum_{i=1}^{n} (0,1,3,4,7,12,13,14)$$

(b) (8 pts) Draw a NAND logic diagram that implements the complement of the following function:

$$F(A,B,C,D) = \sum_{i=1}^{n} (0,1,2,3,6,8,10,11,14)$$

- (c) (5 pts) A PN flip-flop has four operations: clear to 0, no change, complement, and set to 1, when inputs P and N are 00, 01, 10, and 11, respectively. Tabulate the characteristic table and derive the characteristic equation.
- (d) (5 pts) Write the characteristic equations and the excitation tables for D, T and JK flip-flops.

QUESTION FOUR (25 marks)

- (a) (7 pts) Design a half-subtractor circuit with inputs x and y and outputs D and B. The circuit subtracts the bits x y and places the difference in D and the borrow in B.
- (b) (10 pts) Design a full-subtractor circuit with three inputs x, y, z and two outputs D and B. The circuit subtracts x y z, where z is the input borrow, B is the output borrow, and D is the difference.
- (c) (8 pts) Convert the state diagram of figure below to ASM chart.

QUESTION FIVE (25 marks)

- (a) (5 pts) Explain the difference between a **Moore** machine and a **Mealy** machine. Draw a block diagram indicating the structure of a general state machine. Indicate on the diagram where one can find the **present state** and **next state**.
- (b) 10 pts.) Design a counter with T flip-flops that goes through the following binary repeated sequence: 0, 1, 3, 7, 6, 4.
- (c) (10 pts) A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations:

$$J_A = x$$
, $K_A = B$
 $J_B = x$, $K_B = A'$

- (i) Derive the state equations A^+ and B^+ by substituting the input equations for the J and K variables.
- (ii) Draw the state diagram of the circuit. You must tabulate state table first.