UNIVERSITY OF ESWATINI MAIN EXAMINATION, FIRST SEMESTER DECEMBER 2018

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: CONTROL ENGINEERING I

COURSE CODE: EEE431 / EE431

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are five questions in this paper. Answer any four questions. Each question carries 25 marks.
- 2. Useful information is provided on the last page of this paper.
- 3. If you think not enough data has been given in any question you may assume any reasonable values.

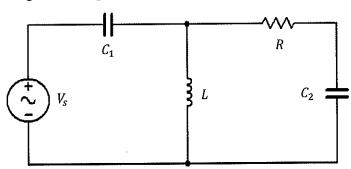
THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (7) PAGES INCLUDING THIS PAGE

Question 1 (25 Marks)

- (a) Show that for a system represented in state space the transfer function is $G(s) = C(sI A)^{-1}B + D$ [10]
- (b) For the state space system shown below

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -361 & -16 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 361 \end{bmatrix} r$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$


Find the following

[15]

- (i) Peak time T_p
- (ii) Percentage Overshoot (% OS)
- (iii) Rising Time (T_r)
- (iv) Settling Time (T_s)

Question 2

(a) Find the state space representation of the following electrical network given that the output is the voltage across C_2 . [15]

(b) Represent the following transfer function in state space equations and matrix, also show the decomposed transfer function and the equivalent block diagram. [10]

$$T(s) = \frac{s^2 + 5s + 4}{(s+3)(s^2 + 7s + 9)}$$

Question 3 (25 Marks)

(a) Consider a plant with the following transfer function

$$T(s) = \frac{s-2}{(s+3)(S^2+2S+17)}$$

Determine the out time response if the input is a step.

[15]

(b) Simplify the following block diagram in Fig. Q.3(b) into a single transfer function using block reduction techniques [10]

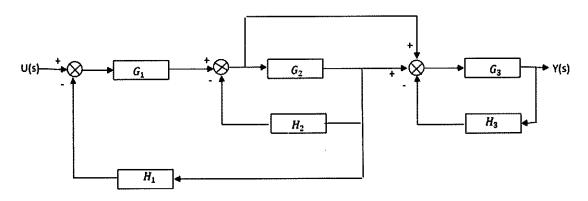


Fig. Q.3 (b)

Question 4 (25 Marks)

(a) Consider the system shown in the Fig.Q.4(a) below, Determine the range of K for stability [10]

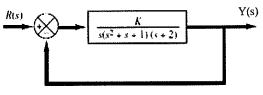


Fig. Q.4 (a)

(b) For the system shown in Fig. 4(b) below show that the proportional control of a system without an integrator will result in a steady-state error with a step input and show that such an error can be eliminated if integral control action is included in the controller. [15]

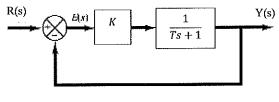


Fig.Q.4 (b)

Question 5 (25 Marks)

- (a) Given the system shown in Fig. Q5 (a)
 - (i) Sketch the root locus, there is no need to annotate break-in/away points and imaginary axis intercepts, if there are any. [10]
 - (ii) If you had to recommend this system to a customer, what would you advise with respect to increasing the feedback gain K indefinitely? [1]
 - (iii) Use the angle criteria to determine if the point s = -5+j3 is on the root locus of the system described in Fig Q5 (a). [4]

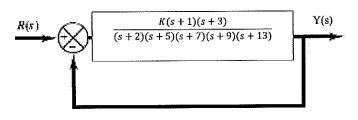


Fig.Q.5 (a)

(b) Discuss the following terms

[4]

- (i) Gain margin
- (ii) Phase margin
- (c) Calculate the gain margin of system described by the following transfer function. [6]

$$G(s) = \frac{1000}{s(s+5)(s+20)}$$

Useful information

Table 1

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance Z(s) = V(s)/I(s)	Admittance Y(s) = I(s)/V(s)
——————————————————————————————————————	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R} \nu(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), G = U (mhos), L = H (henries).

Table 2

Component	Force- velocity	Force- displacement	$Z_{M}(s) = F(s)/X(s)$
Spring $x(t)$ $f(t)$ K	$f(t) = K \int_0^t v(\tau) d\tau$	$f(t) = Kx(t)^{\frac{1}{2}}$	K
Viscous damper $x(t)$ f_v	$f(t) = f_v v(t)$	$f(t) = f_v \frac{dx(t)}{dt}$	$f_{v}s$
Mass = x(t) $M = f(t)$	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	Ms ²

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

Table 3

***************************************	Steady-state error formula	Туре 0		Туре 1		Type 2	
Input		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step,	$\frac{1}{1+K_P}$	K _p = Constant	$\frac{1}{1+K_p}$	<i>K</i> _p = ∞	0	$K_{\rho}=\infty$	0
Ramp,	$\frac{1}{K_v}$	$K_{v}=0$	œ	$K_{V} =$ Constant	$\frac{1}{K_{\nu}}$	<i>K</i> _v = ∞	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_u}$	$K_{\alpha}=0$	œ	$K_a = 0$	50	$K_u =$ Constant	$\frac{l}{K_a}$

Static Error Constants

For a step input, u(t),

$$e(\infty) = e_{\text{step}}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

For a ramp input, tu(t),

$$e(\infty) = e_{\text{ramp}}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}$$

For a parabolic input, $\frac{1}{2}t^2u(t)$,

$$e(\infty) = e_{\text{parabola}}(\infty) = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

Position constant, Kp, where

$$K_p = \lim_{s \to 0} G(s)$$

Velocity constant, Kv, where

$$K_v = \lim_{s \to 0} sG(s)$$

Acceleration constant, Ka, where

$$K_u = \lim_{s \to 0} s^2 G(s)$$

$$f^*(t) = \sum_{k=0}^{\infty} kT\delta(t - kT)$$
$$F^*(s) = \sum_{k=0}^{\infty} kTe^{-kTs}$$

$$e^{-kTs} = Z^{-k}$$

Table 4

Table of Laplace Transforms						
	$f(r) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$\frac{F(s) = \mathfrak{L}\{f(t)\}}{1}$	
1.	1	$\frac{1}{s}$	2.	e ^a	$\overline{s-a}$	
3.	t^n , $n=1,2,3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$	
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$	
7.	sin(at)	$\frac{a}{s^2 + a^2}$	8.	cos(at)	$\frac{s}{s^2 + a^2}$	
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	tcos(at)	$\frac{s^2-a^2}{\left(s^2+a^2\right)^2}$	
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$	
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$	
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$	
17.	sinh(at)	$\frac{a}{s^2 - a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2 - a^2}$	
19.	$e^{at}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$e^{at}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$	
21.	$e^{ar}\sinh\left(br\right)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$e^{at}\cosh(br)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$	
23	$t^n e^{at}, n = 1, 2, 3, \dots$	$\frac{n!}{(s-a)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
25	Heaviside Function	<u>e - e - e - e - e - e - e - e - e - e -</u>	26.	Dirac Delta Function	e ^{-r2}	
27	$u_c(t)f(t-c)$	$e^{-cs}F(s)$	1	$u_e(t)g(t)$	$e^{-ct} \mathcal{L}\{g(t+c)\}$	
29	$e^{a}f(t)$	F(s-c)	30.	$t^n f(t), n=1,2,3,$	$\left(-1\right)^{n}F^{(n)}(s)$	
31	$-\frac{1}{t}f(t)$	$\int_{z}^{\pi}F(u)du$	32.	$\int_0^t f(v)dv$	$\frac{F(s)}{s}$	
33	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	f(t+T)=f(t)	$\frac{\int_0^T e^{-at} f(t) dt}{1 - e^{-aT}}$	
35	f'(t)	sF(s)-f(0)	36.	f''(t)	$s^2F(s)-sf(0)-f'(0)$	
37	$. f^{(n)}(t)$	$s^n F(s) - s$	$s^{n-1}f$	$0) - s^{n-2} f'(0) \cdots - s f^{(n-2)}$	$f^{(0)}(0) - f^{(n-1)}(0)$	