UNIVERSITY OF ESWATINI SIT/RESIT EXAMINATION, FIRST SEMESTER JANUARY 2019

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TITLE OF PAPER: CONTROL ENGINEERING I

COURSE CODE : EEE431 / EE431

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- 1. There are four questions in this paper. Answer all questions. Each question carries 25 marks.
- 2. Useful information is provided at end of this paper.
- 3. If you think not enough data has been given in any question you may assume any reasonable values.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

THIS PAPER CONTAINS SEVEN (7) PAGES INCLUDING THIS PAGE

Question 1

- (a) Briefly compare and contrast open-loop control system versus closed loop control system. [4]
- (b) Draw the block diagram of a closed loop control system for a disk drive. [4]
- (c) For the electric circuit shown below determine the transfer function if the output is the voltage across R_2 and C_2 as shown in Fig Q. 1(c), give that $R_1 = R_2 = 1\Omega$ and $C_1 = C_2 = 1$ F [6]

(d) Given the pole plot shown in figure 1(d), find ξ , ω_n , T_p , %OS and T_s [5]

Fig. Q.1 (d)

(e) Given the system defined below, find the transfer function, $T(s) = \frac{Y(s)}{U(s)}$, where U(s) is the input and Y(s) is the output.

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -9 & -7 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 2 \end{bmatrix} x$$

Question 2

- (a) Based on the natural response definition of stability, explain for the close-loop system case, the terms *stable*, *unstable* and *marginally stable*. [6]
- (b) Find the state equations for the translational mechanical system shown Fig. Q.2 (b) below [13]

(c) Find the state-space representation in phase variable form for the system shown in Fig. Q.2 (c) [6]

Fig. Q.2(c)

Question 3

(a) Given the transfer function below, Find the sampled time function, $f^*(t)$ [13]

$$F(z) = \frac{0.8z}{(z - 0.9)(z - 0.3)(z - 0.5)}$$

(b) Investigate the effect of T on the steady state error on the following system by assume a fixed gain K = 2 [12]

$$G(z) = \frac{Kz(1 - e^{-T})}{(z - 1)(z - e^{-T})}$$

For T = 0.5 sec, 1 sec and 2 sec

Question 4

- (a) What information is contained in the specification $K_p = 100$? [4]
- (b) Find the number of poles in the left half-plane, the right half-plane, and on the $j\omega$ -axis for the system of Fig. Q.4 (b) [6]

Fig.Q4 (b)

(c) Given the system

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} u$$
$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \mathbf{x}$$

Find out how many poles are in the left half-plane, in the half-plane, and on the $j\omega$ -axis. [5]

(d) Consider the system shown in Fig. Q.4(d)

Fig.Q. 4 (d)

- (i) The exact point and gain where the locus crosses the 0.45 damping ratio line
- (ii) The exact point and gain where the locus crosses the $j\omega$ axis
- (iii) The breakaway point on the real axis
- (iv) The range of K within which the system is stable

[10]

Table 1

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance Z(s) = V(s)/I(s)	Admittance Y(s) = I(s)/V(s)
— (— Capacitor	$v(t) = \frac{1}{C} \int_0^t i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-\\\\- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R} v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
	$v(t) = L \frac{di(t)}{dt}$	$l(t) = \frac{1}{L} \int_0^t v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

Note: The following set of symbols and units is used throughout this book: v(t) = V (volts), i(t) = A (amps), q(t) = Q (coulombs), C = F (farads), $R = \Omega$ (ohms), G = U (mhos), L = H (henries).

Table 2

Component	Force- velocity	Force- displacement	impedance $Z_M(s) = F(s)/X(s)$	
Spring .x(t) (0000 - f(t)	$f(t) = K \int_0^t v(\tau) d\tau$	f(t) = Kx(t)	K	
Viscous damper $x(t)$ f_{V}	$f(t) = f_{v}v(t)$	$f(t) = f_v \frac{dx(t)}{dt}$	$f_v s$	
	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2 x(t)}{dt^2}$	M s ²	

Note: The following set of symbols and units is used throughout this book: f(t) = N (newtons), x(t) = m (meters), v(t) = m/s (meters/second), K = N/m (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), M = kg (kilograms = newton-seconds²/meter).

Table 3

Input	Steady-state error formula	Type 0		Type 1		Туре 2	
		Static error constant	Error	Static error constant	Error	Static error constant	Error
Step,	$\frac{1}{1+K_P}$	K _p = Constant	$\frac{1}{1+K_p}$	$K_p = \infty$	0	<i>K_p</i> = ∞	0
Ramp,	$\frac{1}{K_v}$	$K_v = 0$	œ	$K_v =$ Constant	$\frac{1}{K_{\nu}}$	$K_{\nu} = \infty$	0
Parabola, $\frac{1}{2}t^2u(t)$	$\frac{1}{K_a}$	$K_{\alpha}=0$	∞	$K_{\alpha}=0$	æ	K _u = Constant	$\frac{1}{K_a}$

Static Error Constants

For a step input, u(t),

$$e(\infty) = e_{\text{slep}}(\infty) = \frac{1}{1 + \lim_{s \to 0} G(s)}$$

For a ramp input, tu(t),

$$e(\infty) = e_{\text{ramp}}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)}$$

For a parabolic input, $\frac{1}{2}t^2u(t)$,

$$e(\infty) = e_{\text{parabola}}(\infty) = \frac{1}{\lim_{s \to 0} s^2 G(s)}$$

Position constant, K_p , where

$$K_p = \lim_{s \to 0} G(s)$$

Velocity constant, K_{ν} , where

$$K_v = \lim_{s \to 0} sG(s)$$

Acceleration constant, Ka, where

$$K_a = \lim_{s \to 0} s^2 G(s)$$

$$f^*(t) = \sum_{k=0}^{\infty} kT\delta(t - kT)$$
$$F^*(s) = \sum_{k=0}^{\infty} kTe^{-kTs}$$
$$e^{-kTs} = Z^{-k}$$