UNIVERSITY OF ESWATINI

FACULTY OF SCIENCE & ENGINEERING

DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

RESIT EXAMINATION

JANUARY 2020

TITLE OF PAPER:

BASIC ELECTRICAL ENGINEERING

COURSE CODE:

EEE251

DURATION:

3 HOURS

INSTRUCTIONS:

- 1. There are five (5) questions in this paper. Answer question 1 and any other three (3) questions.
- 2. Each question carries equal marks.
- 3. Start each question in a new page.

This paper should not be opened until permission has been given by the invigilator.

This paper contains eight (8) pages including this page.

Question 1 [25 Marks]

a.		2 marks] 2 marks]	
b.	Show the connections required to establish $4k\Omega$ from three terminals of a $10k\Omega$ obtaining of the connections of the connection		
c.	I	Marks]	
d.	A short circuit across a current source draws 15A. If a 10Ω resistor across the draws 13A, what is the internal resistance of the source? [3]	e source Marks]	
e.	copper wire has a resistance of 50Ω at 10^{0} C. What is the maximum operating		
	temperature if the resistance of the wire is to increase by at most 10 percent?		
	[4	Marks]	
f.	wo copper wires each of diameter 0.64mm and length 1.2m are used for connecting		
	the positive and negative terminals of a 5V d.c. supply to an electronic circuit board		
	which takes a current of 0.5A. Calculate the supply voltage appearing across the		
	electronic circuit board. You are given that the resistivity of copper is 1.7x10	$^{-8}$ Ω -m.	
	[6	Marks]	
g.	hat is the greatest voltage and current that can be applied across a $\frac{1}{8}$ W, 2.7M Ω		
	resistor without causing it to overheat? [4	Marks]	

Question 2 [25 Marks]

a. Reduce the resistor network between terminals a and b of Figure Q.2a to a single resistor. [9 Marks]

b. Using mainly source transformation find the current through the 6Ω resistor in Figure Q.2b. [5 Marks]

- c. Consider the circuit of Figure Q.2c, for the following;
 - i. Find all the branch currents in the circuit.

[8 Marks]

ii. Find the power supplied by the current source.

[3 Marks]

Figure Q.2c

Question 3 [25 Marks]

a. Use nodal analysis to find current I₁ and I₂ in the circuit shown in Figure Q.3b. [10 Marks]

Figure Q.3b.

b. Find the Thevenin equivalent circuit with respect to terminal a,b for the circuit shown in Figure Q.3b. [7 Marks]

Figure Q.3b

c. Using superposition find the node voltages V_1 and V_2 in the circuit shown in Figure Q.3c. [8 Marks]

Figure Q.3c

Question 4 [25 Marks]

- a. Given the circuit shown in Figure Q.4a, answer the following:
 - i. Use mesh analysis to determine current I₁ and I₂

[16 Marks]

Figure Q.4a

- ii. Find the power supplied (or absorbed) by each source of the circuit.

 [4 Marks]
- **b.** An impedance $Z_1 = (4 + j4)\Omega$ is connected in parallel with an impedance $Z_2 = (12 + j6)\Omega$. If the input reactive power is 2500VAR (lagging), what is the total active power? [5 Marks]

Question 5 [25 Marks]

a. Consider the circuit shown to answer the following. Assume the capacitor has already been fully charged.

Figure Q.5a

- i. Determine the time it takes for the capacitor to discharge i.e. when the switch is placed at position 2. [2 Marks]
 ii. Give the mathematical expression for v_c and i_c when capacitor is discharging. [4 Marks]
 iii. Sketch the transients of v_c and i_c. [4 Marks]
- **b.** A coil of inductance 0.1 H is connected across a 50 V, 60 Hz supply, in parallel with it is a 100 μ F capacitor which is also in parallel with a 30 Ω resistor as shown in Figure Q.5b. Determine:

i.	The total impedance of the circuit.	[4	Marks]
ii.	The branch currents	[3	Marks]
iii.	The total Active Power taken from the supply.	[2	Marks]
iv.	The total reactive power supplied.	[2	Marks]
v.	The apparent power supplied.	[2	Marks]
vi.	The power factor of the circuit stating whether it is leading or lagg	ing.	
		[2	Marks]

Figure Q.5b.

End of Paper