University of Swaziland Faculty of Science and Engineering Department of Electrical and Electronic Engineering

Main Examination - December 2019

Title of paper: Analogue Electronics I

Course Number: EEE321

Time allowed: 3 hours

Instructions:

- 1. Answer any FOUR (4) questions
- 2. Each question carries 25 marks
- 3. Marks for each question are shown at the right hand margin

This paper contains 5 pages including this one.

This paper should not be opened until permission has been granted by the invigilator.

Question 1

- a) A transistor is usually used as a *voltage-controlled current source*. Assume it is biased to operate in *active mode*, with an aid of a diagram, describe how the currents i_C , i_B and i_E are created within the transistor in terms of holes and electrons. Give the equations for these currents [10]
- b) One challenge encountered in biasing a transistor is that of establishing a constant current dc current. Draw the circuit diagram for the classical method using a single power supply and find the expression of the current I_E [8]
- c) Draw the voltage transfer characteristics (VTC) of a MOSFET transistor and explain how the value of v_{GS} in relation to V_t affects the changes in the modes of operation of the transistor. Write the values of V_{DS} and i_D in the saturation region.

[7]

Question 2

a) For a full wave rectifier

i) Find the mean value of the load current and the load voltage [4]

ii) Show that its efficiency is 0.81 [6]

b) Given the circuit shown in Figure 2 below,

i) Draw the small signal equivalent circuit [5]

ii) Find R_{in} [6]

iii) Show that it has a gain of unity hence the name "Emitter follower" [4]

Figure 2

Question 3

a) Based on Figure 3 a)

i) Draw and label correctly the Hybrid- π small-signal model of the circuit

ii) Given that $I_C=5mA$, $\beta=50$ and $V_T=25mV$ calculate the parameters g_m and r_π

[4]

iii) Find the *small-signal* voltage gain $A_v = \frac{v_{out}}{v_{in}}$; R_{in} and R_o in the circuit below, given that $R_C = 3k\Omega$ and $V_A = 10 V$.

Figure 3 a)

- b) Consider the Common-Source amplifier circuit, Figure 3 b) below. Find the following
 - i) The input resistance R_{in}

[1]

ii) The voltage gain $G_V = \frac{v_0}{v_{slg}}$

[5]

iii) The output resistance R_{out}

[2]

Figure 3 b)

c) List and describe two elements of a regulator

[4]

Question 4

- a) For the op-amp inverting integrator circuit,
 - i) Draw and label the circuit diagram. [3]
 - ii) Determine the voltage across the capacitor. [4]
 - iii) Determine output voltage. [2]
- b) Given the half wave rectifier, Figure 4, below

Figure 4

- i) Find the RMS value of the load voltage [4]
- ii) Find the RMS value of the load current [4]
- iii) Given that the current $i(t) = 5\sin(2\pi 100t)$ and the voltage is $v_0 = 10\sin(2\pi 300t)$ find the values of the RMS voltage and RMS current above. [4]
- iv) Show that the efficiency of the rectifier above $\eta = 0.405$ [4]

Question 5

- a) In the circuit Figure 5 a) below
 - i) Identify the type of regulator.
 ii) Identify the four elements that make up a regulator.
 iii) Find the output voltage.
 [3]

Figure5 a)

- b) Describe the operation of a shunt regulator [6]
- c) Given the circuit shown in Figure 3 (b) below, $R_1 = 100k\Omega$, $R_2 = 50 k\Omega$, $R_C = 5k\Omega$, $R_E = 3k\Omega$, $\beta = 100$, $V_{BE} = 0.7V$
 - i) Calculate the following DC parameters V_{BB} , I_B , I_C , V_C . [7]
 - ii) Draw the resultant circuit, and label all the parameters correctly . [3]

Figure 5 b)