University of Eswatini Faculty of Science and Engineering Department of Electrical and Electronic Engineering

Main Examination 2019

Title of Paper:

Control Engineering I

Course Number:

EEE431

Time Allowed:

3 hrs

Instructions:

- 1. Answer any four (4) questions.
- 2. Each question carries 25 marks.

This paper should not be opened until permission has been given by the invigilator.

This paper contains eight (4) pages including this page.

- b) Find the transfer function of the system on Figure 2. (6)
- c) Sketch its poles and zeros on the S-plane. Discuss if this system is stable or unstable? (4)
- d) Determine if a system with the following characteristic polynomial is stable. How many poles are stable, unstable, or on the imaginary axis? (8)

$$s^6 + 2s^5 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$$

e) Determine the step response function y(t) of the following transfer function. (5)

$$\frac{Y(s)}{R(s)} = \frac{s(s+2)}{(s+3)(s+5)(s+10)}$$

Question 3

- a) Define the following terms for an under-damped second order response: Rise time, Peak time, Maximum overshoot, settling time and steady state error. (5)
- b) For a system with the transfer function $G(s) = \frac{25}{s^2 + 5s + 25}$, calculate the: rise time, peak time, maximum overshoot, and settling time (to within 2%). (10)

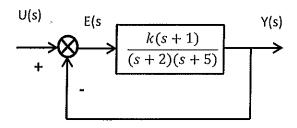


Figure 3

- c) For the system on Fig.3, calculate the value of k for which the steady state error to a step input is 0.5 (6)
- d) For k = 1, calculate the steady state error for ramp input and for a parabolic input. (4)

Question 4

A system has the open-loop transfer function shown below, with regards to its root locus plot:

$$G(s)H(s) = \frac{1}{s(s^2 + 5s + 6)}$$

- a) Determine its poles and zeros. (2)
- b) Calculate the angles of asymptotes. (3)

- c) Where do the asymptotes intersect on the real axis? (2)
- d) Calculate the breakout point. (5)
- e) Sketch the root locus. (no need to calculate the imaginary axis crossing if it exist). (6)
- f) What would be your recommendations with regards to increasing the gain indefinitely? (3)

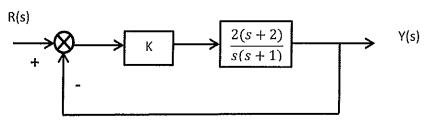


Figure 4

g) For the system on fig.4, find the value of K that will place the closed loop poles at $s=-1\pm j1$ (4)

Question 5

a) Calculate the range of K for which the system T(s) is stable. (6)

$$T(s) = \frac{K}{s^3 + 10s^2 + 7s + K}$$

b)

1) Given the following transfer function G(s), sketch the Bode diagram of the system. (10)

$$G(s) = \frac{50}{s + 20}$$

- 2) Show the phase margin of the system (3)
- 3) Is the closed-loop system stable? (3)
- 4) Show the bandwidth of the system? (3)