Page 1 of 5

31

DEPARTMENT OF GEOGRAPHY, ENVIRONMENTAL SCIENCE AND PLANNING

FINAL EXAMINATION PAPER MAY 2016

B.SC., B.A., BASS & B.ED

TITLE OF PAPER: STATISTICAL GEOGRAPHY

COURSE NUMBER: GEP 223

TIME ALLOWED: THREE (3) HOURS

INSTRUCTIONS:

1. ANSWER THREE (3) QUESTIONS

- 2. QUESTION 1 IS COMPULSORY
- 3. CHOOSE TWO (2) QUESTIONS FROM SECTION B
- 4. WHERE APPROPRIATE ILLUSTRATE YOUR ANSWERS WITH EXAMPLES
- 5. ALL WORKING AND/OR CALCULATIONS MUST BE SHOWN
- 6. YOU WILL BE PROVIDED WITH GRPAH PAPERS AND TABLES FOR CRITICAL VALUES AND SIGNIFICANT LEVELS.

ALLOCATION OF MARKS:

QUESTION ONE (1) CARRIES 40 MARKS WHILE THE REST CARRY 30 MARKS EACH

GEP 223: STATISTICAL GEOGRAPHY

MAY 2016

SECTION A: COMPULSORY

QUESTION 1

Table 1 below shows data in a study of the relationship between the length of time that a person has been exposed to a high level of noise and the sound frequency range to which his or her ears will respond. Here x is the length of time (rounded to the nearest week) that a person has been living near a major airport directly in the flight path of departing jets, and y is his or her hearing range.

Number of weeks (x)	Hearing range (y)
47	15.1
56	14.1
116	13.2
178	12.7
19	14.6
75	13.8
160	11.9
31	14.8
12	15.3
164	12.6
43	14.7
74	14.0
80	13.8
95	14.1
108	12.8

Table 1 Length of time exposed to sound frequency and hearing range

a) Plot a scatter diagram of the data

GEP 223: STATISTICAL GEOGRAPHY

SECTION B: ANSWER ANY TWO QUESTIONS

Page 3 of 5

MAY 2016

33

QUESTION 2

		(30 Marks)
(b)	Find the skewness of 5, 5, 6, 6, 7, 7, 7, 7, 8, 8	(21 marks)
(a)	Define the measures of skewness.	(9 marks)

QUESTION 3

The Swaziland Government has commissioned you to carry out a study of the 400 industries in Matsapa and evaluate their contribution to the national economic development of the country. Two hundred (200) of the industries are small scale, 150 are medium scale and 50 are large scale. The available funds to carry out the study are sufficient to cover only 20% of all the industries.

(a) Demonstrate clearly how you would choose a representative sample for this study.

			(30 Marks)
	(ii)	Identify possible sources of relevant information	(7 marks)
(b)	(i)	Indicate the type of information you will need for this study.	(8 marks)
			(15 marks)

QUESTION 4

Table 2 below shows the caloric values of the fat content of meals served in three elementary schools. Using this data, perform an Analysis of Variance (ANOVA) among the three schools at 0.05 level of significance to test whether the differences in the caloric values among the samples are significant or not.

Table 2 Caloric value of meals in three Elementary schools

School 1:	127	143	142	117	140	146	141	148
School 2:	127	146	138	143	142	124	130	130

		~
GEP 223: STATISTICAL GEOGRAPHY	MAY 2016	34

Page 4 of 5

QUESTION 5

a) Outline the functions of statistical techniques in human geography. (10 marks)

- b) Explain the main steps involved in the scientific approach to analysing geographical problems. (12 marks)
- c) Briefly explain the problem for which each of the tests is appropriate for analysing data.

		(30 Marks)
iv)	Analysis of Variance (ANOVA)	(2 marks)
iii)	Pearson Correlation Co-efficient	(2 marks)
ii)	Regressional analysis	(2 marks)
i)	Chi-square test	(2 marks)

Page 5 of 5 35

TABLES OF CRITICAL VALUES 219

Reject H_0 if calculated value of r_s is greater than the critical value at the chosen significance level (in absolute terms).

For degrees of freedom greater than 30 other critical values can be found from the following relationship:

$$r_s = z\sqrt{1/(n-1)}$$

where r_s is the critical value of r_s , n is the number of individuals in the data set (the degrees of freedom), and z is the appropriate critical value of a standard normal deviate (from Appendix C10). For a two-tailed test at the 0.01 level the appropriate value of z is 2.576, so the critical value of r_s with 72 degrees of freedom is:

$$2.576\sqrt{1/(72-1)} = 2.576\sqrt{0.014}$$
$$= 2.576 \times 0.119$$
$$= 0.306$$

C10 Critical Values of a Standard Normal Deviate z

	Significance level (one-tailed)						
	0.1	0.05	0.01	0.005	0.001		
z	1.282	1.645	2.326	2.576	3.090		
-z	-1.282	-1.645	-2.326	-2.576	-3.090		
	Signif	ficance le	vel (two	-tailed)			
	0.1	0.05	0.01	0.005	0.001		
Z	1.645	1.960	2.576	2.813	3.291		
-z	-1.645	-1.960	-2.576	-2.813	-3.291		

C9 Critical Values of Spearman's Rank Correlation Coefficient $r_{\rm s}$

-	Significance level (one-tailed)				
	0.05	0.025	0.01	0.005	
Degrees of	Significance level (two-tailed)				
freedom	0.1	0.05	0.02	0.01	
4	1.000				
5	0.900	1.000	1.000		
6	0.829	0,886	0.943	1.000	
7	0.714	0.786	0.893	0.929	
. 8	0.643	0.738	0.833	0.881	
9	0.600	0.683	0.783	0.833	
10	0.564	0.648	0.745	0.794	
11	0.523	0.623	0.736	0.818	
12	0.497	0.591	0.703	0.780	
13	0.475	0.566	0.673	0.745	
14	0.457	0.545	0.646	0.716	
15	0.441	0.525	0.623	0.689	
10	0.425	0.507	0.601	0.666	
1/	0.412	0.490	0.582	0.045	
10	0.399	0.470	0.504	0.023	
19	0.388	0.462	0.549	0.608	
20	0.377	0.430	0.534	0.591	
21	0.308	0.430	0.521	0.570	
22	0.359	0.420	0.300	0.502	
23	0.331	0.410	0.490	0.547	
-25	0.336	0.400	0.405	0.557	
26	0.329	0.392	0.465	0.515	
27	0.323	0.385	0.456	0.505	
28	0.317	0.377	0.448	0.496	
29	0.311	0.370	0.440	0.487	
30	0.305	0.364	0.432	0.478	
35	0.282	0.336	0.399	0.442	
40	0.263	0.314	0.373	0.413	
45	0.248	0.296	0.351	0.388	
50	0.235	0.280	0.332	0.368	
55	0.224	0.267	0.317	0.351	
60	0.214	0.255	0.303	0.335	
65	0.206	0.245	0.291	0.322	
70	0.198	0.236	0.280	0.310	
75	0.191	0.228	0.271	0.300	
80	0.185	0.221	0.262	0.290	
85	0.180	0.214	0.254	0.281	
90	0.174	0.208	0.247	0.273	
95	0.170	0.202	0.240	0.266	
100	0.165	0.197	0.234	0.259	