UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2010/2011

B.A.S.S. /BEd. /BEng. /BSc. II

TITLE OF PAPER : LINEAR ALGEBRA

COURSE NUMBER

: M 220

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY <u>FIVE</u> QUESTIONS

SPECIAL REQUIREMENTS

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

1. (a) Solve the linear system

using Gaussian-Jordan elimination.

[8 marks]

(b) Express the matrix

$$\begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

as a product of elementary matrices.

[12 marks]

QUESTION 2

2. (a) Given the linear system

$$3x_1 + 3x_2 + \beta x_3 = \alpha$$

 $x_1 + 3x_3 = 2$
 $-x_1 + 3x_2 + 2x_3 = -8$

find values of α and β for which the system has;

- i. no solutions,
- ii. a unique solution,
- iii. infinitely many solutions.

[10 marks]

- (b) Prove that if a square matrices A is invertible, then A^2 is invertible and $(A^2)^{-1} = (A^{-1})^2$. [5 marks]
- (c) Let A be a 2×2 matrix and let $B = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$. If AB = BA, then show that $A = \begin{bmatrix} \gamma + \delta & 0 \\ \gamma & \gamma + \beta \end{bmatrix}$ for some numbers α and β . [5 marks]

- 3. (a) Write down any 5 axioms for a vector space. [5 marks]
 - (b) State the **subspace test** for determining whether or not a non-empty set W is a subspace of a vector space V. [3 marks]
 - (c) Determine whether or not the following subsets are subspaces. Justify your answers.

i. $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a+d=1 \right\}$ in the set M_{22} of all of all 2×2 matrices. [4 marks]

ii. $W = \{p(x) \in P_2 | p'(0) = 0\}$ in the set P_2 of all polynomials of degree at most 2. [4 marks]

iii. $W = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : x_1 + x_n > 0\}$ in \mathbb{R}^n . [4 marks]

QUESTION 4

4. (a) Let $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a set of vectors in a vector space V. Explain precisely what is meant by each of the following statements.

i. The vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ span V,

[2 marks]

ii. S is linearly independent in V,

[2 marks]

iii. S is a basis for V.

[2 marks]

(b) Determine whether or not the set

$$\{(1,0,0),(0,1,0),(1,0,1)\}$$

spans \mathbb{R}^3 .

[4 marks]

(c) Determine whether or not the set

$$\{(1,2,3),(4,5,6),(7,8,9)\}$$

is linearly independent in \mathbb{R}^3 .

[4 marks]

(d) i. Define the column space Col A of an $m \times n$ matrix A.

[2 marks]

ii. Given the set

$$W = \left\{ \begin{bmatrix} a+b+c \\ a+b \\ a \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$$

determine a suitable matrix A such that $W = \operatorname{Col} A$.

[4 marks]

- 5. Let U and V be vector spaces.
 - (a) What does it mean to say that T is a linear map from U to V? [2 marks]
 - (b) Are the following linear maps? Justify your answers.

i.
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
; $T(x_1, x_2) = (x_1^2, x_1^2)$. [4 marks]

ii.
$$T: P_2 \to P_1; T(a_0 + a_1x + a_2x^2) = \frac{d}{dx}(a_0 + a_1x + a_2x^2).$$
 [4 marks]

iii.
$$T: M_{22} \to \mathbb{R}; T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = b + c.$$
 [4 marks]

- (c) i. Let U and V be vectorspaces, and let $T: U \to V$ be a linear map.
 - A. Define the kernel of T.

[2 marks]

B. Define the nullity of T.

[2 marks]

ii. If $T: U \to U$ is defined by T(p(x)) = p''(x), then what is the nullity of T? [2 marks]

QUESTION 6

- 6. (a) Let M_{22} denote the set of all 2×2 matrices in the usual manner. The trace tr A of a square matrix A is the sum of all its diagonal entries.
 - i. Show that

•
$$\langle A, B \rangle = \operatorname{tr}(B^T A)$$

defines an inner product on the vector space M_{22} .

[6 marks]

ii. Define the norm ||A|| of a matrix $A \in M_{22}$ with respect to the inner product in 6(a)i above. [2 marks]

iii. Compute
$$||A||$$
 when $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

[2 marks]

(b) If

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 3 \end{bmatrix}$$

then find the eigenvalues and eigenvectors of A.

[10 marks]

7. (a) State the Cayley-Hamilton theorem and verify it with the matrix

$$\begin{bmatrix} 0 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

[10 marks]

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear map defined by

$$T(x_1, x_2, x_3) = (x_1, x_2 - x_3)$$

Find bases for the image and kernel of T.

[10 marks]