UNIVERSITY OF SWAZILAND

.

FINAL EXAMINATION 2011/12

BSC. III

TITLE OF PAPER	:	COMPLEX ANALYSIS		
COURSE NUMBER	:	M313		
TIME ALLOWED	:	THREE (3) HOURS		
INSTRUCTIONS	:	1. THIS PAPER CONSISTS OF <u>SEVEN</u> QUESTIONS.		
SPECIAL REQUIREMENTS	:	2. ANSWER ANY <u>FIVE</u> QUESTIONS NONE		

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. 92

(a) (i) What is a principal value of arg z?	
(ii) Solve $z^3 = i - 1$.	[2, 4]
(b) In the complex plane define and give an example of	
(i) ϵ - neighborhood of point z_o ,	
(ii) simply connected set of points.	[2,2]
(c) Sketch the following sets and determine which are domains	
${\rm (i)} \ \ z-2+i < 1,$	
(ii) $Imz > 1$,	
(iii) $0 < \arg z \leq \frac{\pi}{4}$.	[2,2,2]
(d) Construct a line	
$Im\frac{1}{z+i}=1.$	

[4]

QUESTION 2

(a) Find a region into which a transformation $w = z^2$ maps a square	
$0 \le Re \ z \le 1, 0 \le Imz \le 1.$	[4]
(b) Find the limits. Give your reasonings	
(i) $\lim_{z \to \infty} \frac{2z+i}{z+1}$,	
(ii) $\lim_{z \to 3} \frac{1}{(z-3)^2}$.	[2,2]
(c) Define uniformely continous function of complex variable.	[2]
(d) Using just a definition of derivative, find if possible $f'(z)$ if	
(i) $f(z) = 3z^2$,	
(ii) $f(z) = Re \ z$.	
	[2,2]

(e) Derive Cauchy-Riemann conditions. [6]

(a) Using	Cauchy-R	iemann	equations	(CRE)
----	---------	----------	--------	-----------	------	---

(i) State the sufficient conditions theorem for existance of f'(z), and thus

- (ii) check if there is f'(z) if $f(z) = z^3$, $f(z) = \frac{1}{z}$. Find f'(z). [2,6]
- (b) Verify CRE for

 $f(z) = x^2 + 2iy$, where z = x + iy.

(c) (i) Derive CRE in polars,

(ii) Consider $f(z) = \frac{1}{z}$. Pass to polar coordinates to check if there is f'(z) and find it. [4,5]

QUESTION 4

a) Consider $f = |z|^2$. Give your reasonings to answer if f

(i) is analytic,

(ii) has the singular points.

[2,2]

[3]

b) Prove that f(z) = u(x, y) + iv(x, y), where z = x + iy, is analytic in domain D, if and only if v(x, y) is harmonic conjugate function (HCF) of u(x, y). [6]

(c) For the function $u(x, y) = 4xy(y^2 + x^2)$, find whether it can be the real part of a complex analytic function, and if so, find the corresponding imaginary part. [3]

(d) Show that $u(x,y) = x^2 - y^2 - 2xy - 2x + 3y$ is harmonic and find corresponding HCF [7]

a) Let f(z) = z+2/z. Evaluate ∫_c f(z)dz, if c is positively oriented semicircle z = 2e^{iθ}, 0 ≤ θ ≤ π. [6]
b) (i) Derive Cauchy formula for continuous f'(z).

HINT: Apply Green's formula

$$\int_{c} P dx + Q dy = \int \int_{R} (Q_x - P_y) dx dy.$$

(ii) Use result from (i) to evaluate

$$\int_c \frac{dz}{(z^2+1)(z^2+16)},$$

if $c = \{z : |z| = 3 \text{ in positive direction and } |z| = 2 \text{ in negative direction}\}$ [6,3]

(c) Apply Cauchy integral formula to evaluate

$$\int_{c} \frac{zdz}{(25-z^2)(z+i)}, \text{ where } c \text{ is a positively oriented circle } |z| = 2.$$
[5]

QUESTION 6

a) Let C be a simple closed contour, described in the positive sense in the z plane, and write $g(a) = \int_{c} \frac{z^{3} + 2z}{(z - a)^{3}} dz.$ Show (i) $g(a) = 6\pi i a$, when a is inside c, and (ii) g(a) = 0 when a is outside c. [4,2] b) (i) State the Taylor series theorem and thus (ii) expand $\frac{1}{1 - z}$ in a Maclaurin series for |z| < 1. [2,3] (c) Expand $\frac{1}{(1 - z)(2 + z)}$ in Laurent series in powers of z valid for (i) |z| < 1, (ii) 1 < |z| < 2, (iii) $2 < |z| < \infty$. [3,3,3] HINT: $\frac{1}{1 - z} = \sum_{n=0}^{\infty} z^{n}$, |z| < 1.

a) For
$$f(z) = \frac{1}{z + z^2}$$

(i) find residue at z = 0, and thus

(ii) evaluate
$$\int_c \frac{dz}{z+z^2}$$
, where c is a positively oriented circle $|z| = \frac{1}{2}$. [4,3]

b) (i) State the residue theorem, and

(ii) apply it to evaluate

$$\int_{c} \frac{z+1}{z^2 - 2z} dz, \text{ where } c \text{ is a positively oriented circle } |z| = 3.$$
[2,4]

c) Using the residue theorem evaluate

•

$$\int_{-\infty}^{\infty} \frac{\cos 3x}{(x^2+1)^2} dx.$$
[7]