University of Swaziland

Supplementary Examination, July 2013

. BSc I, EEng I, BEd I, BASS I

Title of Paper	: Algebra, Trig. & Analytic Geom.		
Course Number	: M111		
Time Allowed	: Three (3) hours		
Instructions	:		

- 1. This paper consists of SEVEN questions.
- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

This paper should not be opened until permission has been given by the invigilator.

/

(a) Find the first 4 terms of the binomial expansion of

$$\left(1-3x^2\right)^{-\frac{2}{3}}.$$
 [6 marks]

(b) Find the *middle term* of the binomial expansion of

$$\left(\frac{1}{\sqrt{p}} - 2p^2\right)^{20}.$$
 [4 marks]

$$\frac{2x^4 - 3x^3 - 2x + 5}{x^2 + 1}.$$
 [6 marks]

(d) Evaluate

4	-2	1	
-1	1	5	. [4 marks]
1	3	$5 \\ -1$	
,			1

Question 2

(a) Solve for x .				
(i) $\log_3 x^2 = -4$	[2 marks]			
(ii) $\log_{\pi}(4x-19)=0$	[2 marks]			
(iii) $\log_2 x + \log_2(x-1) = 1$	[5 marks]			
(b) Find the equation of the circle that passes through $(2,3)$ and				
(-1,6) with centre on the line $2x + 5y + 1 = 0$.	[7 marks]			
Hence, find the radius and centre of the circle.	[4 marks]			

(a) Consider the parametric equations

$$x = 1 - 9\sin\theta, \quad y = 2 + 9\cos\theta. \tag{1}$$

- i. By eliminating θ , express (1) as a single equation in terms of x and y only. [5 marks]
- ii. Fully describe the curve defined by (1) and make a sketch, showing all the key features. [5 marks]

(b) Simplify and express your answers in the form a + ib

i.
$$(1+2i^{17})(1+2i^{23})(1+3i^{25})$$
 [5 marks]

ii.
$$\frac{25}{3+4i} + \frac{25}{(1+2i)^2}$$
 [5 marks]

Question 4

(a) Prove

,

i.
$$(1 - \sin^2 \theta) (1 + \tan^2 \theta) = 1$$
 [3 marks]
ii. $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$ [7 marks]

(b) Solve

$$\begin{array}{rcl} x+y-2z &=& -1\\ x+&z &=& 4\\ x-2y &=& 7 \end{array}$$

using Cramer's rule.

[10 marks]

1

(a) Given that z = 2 - 3i is a root of

$$z^3 + Az^2 + Bz + 13 = 0,$$

where A and B are real constants, find

- (i) the values of A and B [4 marks]
- (ii) the 2 other roots [5 marks]
- (b) Use synthetic division to work out

$$\frac{x^5 + 2x^3 - 3x - 70}{x - 4}.$$
 [4 marks]

(c) Use mathematical induction to prove that

$$P(n) = 1 + 3^{2n-1}$$

is always divisible by 4 (where $n \ge 1$ is an integer).

[7 marks]

Question 6

.

(a) Solve	e for x	
i.	$2^{x - \frac{1}{2}} = 4 \cdot 3^x$	[3 marks]
ii.	$4^x + 6 = 5 \cdot 2^x$	[5 marks]
(b) Find	the value of the sum	
i.	$40 + 45 + 50 + 55 + \dots + 5000$	[3 marks]
ii.	$2+6+18+54+\dots+39,366$	[3 marks]
(c) Find	a solution set of	
	$\sin^2\theta - \cos\theta = 0$	
in the interval $-\pi \leq \theta \leq \pi$.		[6 marks]

(a) Find the value(s) of x such that the numbers

$$2x - 5, x - 4, 10 - 3x$$

form a geometric progression.

[5 marks]

(b) Use mathematical induction to prove the formula

 $1 + 2 + 2^2 + 2^3 + \dots + 2^{n-1} = 2^n - 1$ $n \ge 1$. [10 marks]

(c) Simplify .

$$\frac{x-2\ln e^{x-1}-3\ln e^{1-x}-4\log_4\sqrt{2}+(\cos x+i\sin x)(\cos x-i\sin x)}{[5 \text{ marks}]}$$