UNIVERSITY OF SWAZILAND

ж. ¹

SUPPLEMENTARY EXAMINATION, 2016/2017

BASS III, B.Ed (Sec.) III, B.Sc. III

- **Title of Paper** : Real Analysis
- Course Number : M331
- **Time Allowed** : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PER-MISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

(a) Consider a set $E \subseteq \mathbb{R}$. Give precise definitions for each of the following.

i. $m \in \mathbb{R}$ is a <i>lower bound</i> of <i>E</i> .	(2)
ii. $M \in \mathbb{R}$ is an <i>upper bound</i> of <i>E</i> .	(2)
iii. E is bounded.	(2)
iv. m is the minimum of E .	(2)
v. <i>M</i> is the <i>maximum</i> of <i>E</i> .	(2)
vi. <i>M</i> is the <i>supremum</i> of $E \neq \emptyset$.	(2)
vii. <i>m</i> is the <i>infimum</i> of $E \neq \emptyset$.	(2)

(b) Let

$$A = \bigg\{ \frac{1}{n} \, . \, n \in \mathbb{N} \bigg\}.$$

i. Find (if they exist) $min(A)$, $max(A)$, $inf(A)$, and $sup(A)$.	(4)
ii. Is A bounded? Explain.	(2)

(c) Give the $\varepsilon - \delta$ definition for $\lim_{x \to a} f(x) = L$, where f is a real-valued function. (3)

- (d) Give the εN definition for $\lim_{n \to \infty} x_n = x$ where $\{x_n\}$ is a sequence of real numbers. (3)
- (e) i. Define a Cauchy sequence.
 (3)
 ii. State the Cauchy convergence criterion for sequences.
 (3)
 iii. Define a Cauchy series.
- (f) Prove or disprove.
 - i. If f is continuous at c, then f is differentiable at c. (3)

ii. If
$$\lim_{n \to \infty} x_n = 0$$
, then the series $\sum_{n=1}^{\infty} x_n$ is convergent. (3)

_END OF SECTION A – TURN OVER

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

- (a) Determine whether or not the series $\sum_{n=1}^{\infty} \frac{2n}{3n+1}$ is convergent. (4)
- (b) Use the integral test to show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent. (6)
- (c) Let $\{x_n\}$ be the sequence recursively defined by

$$x_1 = 2$$
, $x_{n+1} = x_n - \frac{x_n^2 - 2}{2x_n}$.

- i. Show that $x_n > 0$ for all integers $n \ge 1$. (4)
- ii. Show that $\{x_n\}$ is a non-increasing sequence. (4)
- iii. Determine whether the sequence converges or not. Give reasons for your answer. (2)

QUESTION B3 [20 Marks]

(a) Give a precise $\varepsilon - N$ argument to show that

$$\lim_{n \to \infty} \frac{2n^2}{5n^2 + 1} = \frac{2}{5}.$$

(b) Show that the sequence $\{x_n\}$ given by

$$x_n = \frac{1}{n}$$

is Cauchy.

(c) i. Fill in the blanks: A sequence $\{x_n\}$ diverges to ∞ if for every _____ there is _____ such that ______ whenever _____. (4)

ii. Let $x_n = n^3$. Use (i) above to show that $x_n \to \infty$ as $n \to \infty$.

_TURN OVER

(7)

(6)

(3)

QUESTION B4 [20 Marks]

(a) Show that the equation

$$\ln x = 2 - x$$

has a solution in the interval [1, e].

- (b) Let f(x) = 10x 11. Use an $\varepsilon \delta$ argument to show that $\lim_{x \to 5} f(x) = 39$. (7)
- (c) Prove: If $\lim_{x\to c} f(x)$ exists, then it is unique.

QUESTION B5 [20 Marks]

- (a) Prove: If $f : I \to \mathbb{R}$ is differentiable at $c \in I$, then f is continuous at c. (7)
- (b) State the Fundamental Theorem of Calculus.
- (c) Let $f : [0, 2] \to \mathbb{R}$ be given by

$$f(x) = \begin{cases} 1, & \text{if } x < 1, \\ \frac{1}{2}, & \text{if } x = 1, \\ 0, & \text{if } x > 1. \end{cases}$$

Show that *f* is Riemann integrable and find $\int_0^2 f(x) dx$. (10)

QUESTION B6 [20 Marks]

(a) Prove: Let $\{x_n\}$ and $\{y_n\}$ be convergent sequences. Then

$$\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n.$$

(7)

(6)

(7)

(3)

- (b) Let $f(x) = x^2$ and let $0 < a < \infty$. Show that f is uniformly continuous on [-a, a]. (7)
- (c) Prove the reverse triangle inequality

$$||x| - |y|| \le |x - y|, \text{ for } x, y \in \mathbb{R}.$$

(6)

_END OF EXAMINATION PAPER___

ACADEMIC YEAR 2016/2017 PAGE 3