FINAL EXAMINATION, 2017/2018 B.Sc. III, BASS III, B.Ed. III

i na sa ta

Title of Paper	•	Abstract Algebra I
----------------	---	--------------------

Course Number : MS323/MAT324

Time Allowed : Three (3) Hours

Instructions

1

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)
 - Answer ALL questions in Section A.
 - b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE (3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

ASSOCIATE OF A CONSTRUCTION OF A STRUCTURE OF A STR

QUESTION A1

- (a) Prove that every subgroup of a cyclic group is cyclic. (10 marks)
- (b) Give an example of a group satisfying the give conditions or, if there is no such example, say so. (Do not prove anything)
 - (i) An infinite cyclic group
 - (ii) a noncyclic group of order 4
 - (iii) A nonabelian cyclic group

(6 marks)

(c) Find the greatest common divisor d of the numbers 204 and 54, i.e., d = (204, 54) and express d in the form d = 204m + 54n for some $m, n \in \mathbb{Z}$ (4 marks)

QUESTION A2

- (a) Prove that, if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$ (5 marks)
- (b) (i) Give the definition of a cyclic group. (2 marks)
 (ii) Prove that every finite group of prime order is cyclic. (5 marks)
 (c) Determine whether the set Q, with respect to the binary operation a * b = a + b 2018 is a group. (8 marks)

. ..

1

QUESTION B3 -

Let
$$\alpha = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 5 \ 8 \ 6 \ 3 \ 2 \ 4 \ 1 \ 7 \end{pmatrix}$$
 and $\beta = \begin{pmatrix} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \\ 1 \ 7 \ 5 \ 3 \ 8 \ 2 \ 6 \ 4 \end{pmatrix}$

(a) Express α and β as products of disjoint cycles, and then as products of transpositions. For each of them, say whether it is an even permutation or an odd one. (8 marks)

(b) Compute
$$a^{-1}$$
, $\beta^{-1}\alpha$, $(\alpha\beta)^{-1}$ (6 marks)

(c) Solve the equations
$$\alpha x = \beta$$
, $y\alpha = \beta$ (3 marks)

(d) Find the order of β and compute β^{2018} ((3 marks)

QUESTION B4

(a) Let
$$\varphi: G \to H$$
 be isomorphism of groups

(i) Prove that if e_g and e_H are the identity elements of G and H respectively, then $(e_g)\varphi = e_H$ (4 marks)

(ii) Prove that for any
$$a \in G$$

 $(a^{-1})\varphi = [(a)\varphi]^{-1}$ (4 marks)

(b) Let $H_{\widehat{z}}\{\rho_0, \rho_1, \rho_2\}$ and $G = S_3$ where $\rho_o = (1)$ – identity $\rho_1 = (123)$ $\rho_2 = (132)$

Show that H is a normal subgroup of G. (12 marks)

QUESTION B5

- (a) Define the term subgroup of a group G. (3 marks)
- (b) State (do not prove), Lagrange's theorem for finite groups. (3 marks)

- (a) and a complete constant of particular for a set of the set
- (ii) What order subgroups can possibly exist? (Justify your answers) (8 marks)
- (d) Does an element of order 3 exist in S_3 ? If so, use it to given an example of a subgroup of order 3 in S_3 (6 marks)

QUESTION B6

(a) Prove that if G is a group of order P, where P is prime, then G is cyclic. (8 marks)
(b) Prove that every cyclic group is abelian. (6 marks)
(c) Let m be a positive integer greater than 1, and let, for a, b ∈ Z aRb If and only if a ≡ b(mod m) Prove that R is an equivalence relation on Z (6 marks)

QUESTION B7

- (a) Let $H = \langle 6 \rangle$ be the subgroup of Z_{18} generated by 6.
 - (i) Find all cosets of H in Z_{18}
 - (ii) Write the group table for the factor/quotient group Z_{18}/H (10 marks)
- (b) In the following pairs the two groups are not isomorphic. In each case given a reason why
 - (i) Z_5 , Z_6
 - (ii) Z_6 , S_3

(4 marks)

(c) Solve the following:

- (i) $9x \equiv 11 \pmod{36}$
- (ii) $3x + 1 \equiv 3 \pmod{5}$ (6 marks)