University of Eswatini

Re-sit/Supplementary Examination, July 2019

B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper

: Calculus II

Course Code

: MAT212/M212

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) (i) Sketch the curve represented by the equations $x = \frac{1}{\sqrt{t+1}} \text{ and } y = \frac{t}{t+1}, t > -1.$ [4]
 - (ii) Find $\frac{dy}{dx}$ for the curve given by $x = \sin t$ and $y = \cos t$. [4]
 - (iii) Sketch the polar curve $\theta = \frac{\pi}{3}$ also find a Cartesian equation for this curve. [4]
- (b) (i) Find the domain of $f(x, y) = \frac{\sqrt{x^2 + y^2 9}}{x}$. [5]
 - (ii) Discuss the continuity of the function $f(x,y) = \frac{2}{y-x^2}$. [5]
 - (iii) Find the directional derivative of $f(x, y) = x^2 \sin 2y$ at $(1, \frac{\pi}{2})$ in the direction of $\mathbf{v} = 3\mathbf{i} 4\mathbf{j}$.
- (c) (i) Sketch the region whose area is represented by the integral $\int_0^2 \int_{y^2}^4 dx dy.$ Then find another iterated integral using the order dydx to represent the same area and show that both integrals yield the same value. [6]
 - (ii) Evaluate the iterated integral $\int_0^2 \int_0^{z^2} \int_0^{y-z} (2x-y) dx dy dz$. [6]

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) Find the horizontal and vertical tangent lines of $r = \sin \theta \text{ where } 0 \le \theta < \pi. \tag{10}$
- (b) Find the area of the region that is bounded by the given curve and lies in the specified sector

$$r^2 = 9\sin 2\theta, \quad r \ge 0, \quad 0 \le \theta \le \pi/2.$$
 [10]

Question 3

(a) Find an equation of the tangent to the curve at the given point by two methods:(i) without eliminating the parameter and (ii) by first eliminating the parameter.If the curve is given by

$$x = 1 + \ln t, \quad y = t^2 + 2, \quad (1,3).$$
 [10]

(b) Find the length of the arc from 0 to 2π for the cardioid $r = 2 - 2\cos\theta$. [10]

Question 4

- (a) Find the limit, if it exists, or show that the limit does not exist for $\lim_{(x,y)\to(0,0)}\frac{x^4-4y^2}{x^2+2y^2}.$ [10]
- (b) Find the local maximum and minimum values and saddle point(s), if any, of the function

$$f(x,y) = (x-y)(1-xy). [10]$$

Question 5

- (a) Find the differential of the function $z = e^{-2x} \cos 2\pi t. \tag{10}$
- (b) Find the equation of the tangent plane to the paraboloid $z = 1 \frac{1}{10}(x^2 + 4y^2) \text{ at the point } (1, 1, \frac{1}{2}).$ [10]

Question 6

(a) Evaluate the double integral

$$\int \int_R x dA$$
 where D is the region given by $D = (x, y) | 0 \le x \le \pi, \ 0 \le y \le \sin x.$ [10]

(b) Use an iterated integral to find the area of the region bounded by graphs of the $f(x) = \sin x$ and $g(x) = \cos x$ between $\frac{\pi}{4} \le x \le \frac{5\pi}{4}$. [10]

End of Examination Paper