-

UNIVERSITY OF SW	AZIL	AND 102		
FACULTY OF SCIEN	ICE			
DEPARTMENT OF P	DEPARTMENT OF PHYSICS			
SUPPLEMENTARY I	EXAM	INATION 2011/2012		
TITLE OF PAPER	:	MATHEMATICAL METHODS FOR PHYSICISTS		
COURSE NUMBER	:	P272		
TIME ALLOWED	:	THREE HOURS		
INSTRUCTIONS	:	ANSWER <u>ANY FOUR</u> OUT OF FIVE QUESTIONS. EACH QUESTION CARRIES <u>25</u> MARKS.		
		MARKS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MARGIN.		

THIS PAPER HAS <u>SEVEN</u> PAGES, INCLUDING THIS PAGE.

~

DO NOT OPEN THE PAPER UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

1

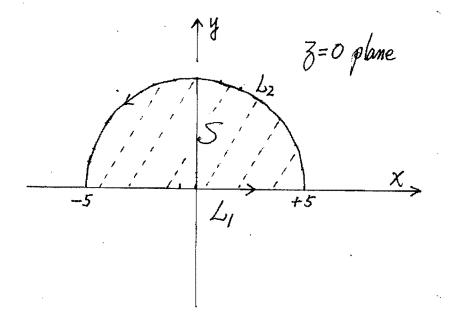
P272 MATHEMATICAL METHODS FOR PHYSICIST

Question one

- (a) (i) Given P(-3, -8, -5) in Cartesian coordinate system, find its cylindrical and spherical coordinates. (5 marks)
 - (ii) Given P (5, 300⁰, -9) in cylindrical coordinate system, find its Cartesian and spherical coordinates. (5 marks)
- (b) Given $f = \rho^2 \cos \phi 4 z^2$
 - (i) find the value of $\vec{\nabla} f$ at a point P(1, 30⁰, -2), (5 marks)
 - (ii) find the value of the directional derivative of f at a point P (1, 30⁰, -2) along the direction of $\vec{e}_{\rho} 3 - \vec{e}_{\phi} 4 + \vec{e}_{z}$, (5 marks)
 - (iii) find $\vec{\nabla} \times (\vec{\nabla} f)$ and shows that it is zero. (5 marks)

Question two

Given a vector field $\vec{F} = \vec{e}_x (x^2 - 2y^2) + \vec{e}_y (6xz) + \vec{e}_z (z^2 + 3y)$ in Cartesian system and a semi-circular closed loop L (= $L_1 + L_2$) in counter clockwise sense on z = 0 plane as shown in the following diagram :



(a) Find the value of
$$\oint \vec{F} \cdot d\vec{l}$$
. (10 marks)
(Hint: $\begin{cases} L_1 : z = 0, y = 0 \& -5 \le x \le 5 \\ L_2 : z = 0, x = 5 \cos(t), y = 5 \cos(t) \& 0 \le t \le \pi \end{cases}$)

(b) Find $\vec{\nabla} \times \vec{F}$ and then evaluate the value of the surface integral $\iint (\vec{\nabla} \times \vec{F}) \cdot d\vec{s}$ where S is bounded by the given L. Compare this answer to that obtained in (a) and make a brief comment. (15 marks)

(Hint: $d\vec{s} = \vec{e}_z dx dy$ and integrate about x first from $-\sqrt{25 - y^2}$ to $\sqrt{25 - y^2}$, then integrate about y from 0 to 5)

Question three

Given the following differential equation as :

$$\frac{d^2 y(t)}{dt^2} + 6 \frac{d y(t)}{dt} + 25 y(t) = 0$$

utilize the power series method, i.e., setting $y(x) = \sum_{n=0}^{\infty} a_n x^{n+s}$ and $a_0 \neq 0$,

(a) write down the indicial equations. Find the values of s and a_1 (setting $a_0 = 1$).

(10 marks)

(b) write down the recurrence relation. For all the appropriate values of s and a_1 found in (a), set $a_0 = 1$ and use the recurrence relation to calculate the values of a_n up to the value of a_5 . Thus write down two independent solutions in their power series forms. (15 marks)

Question four

Given the following non-homogeneous differential equation as

ŧ

1.13

$$\frac{d^2 y(t)}{dt^2} + 6 \frac{d y(t)}{dt} + 25 y(t) = 102 \cos(t) + 195 \sin(2t)$$
(a) find its particular solution $y_p(t)$, (8 marks)

(b) find the general solution to the homogeneous part of the given equation $y_h(t)$,

(6 marks)

(c) write down the general solution to the given non-homogeneous differential equation, then find its specific solution $y_s(t)$ if the initial conditions are given as

$$y(0) = +3 \quad \& \quad \frac{d y(t)}{d t} \Big|_{t=0} = -1$$
 (11 marks)

5

Question five

Given the following equations for coupled oscillator system as :

.."1

$$\begin{cases} \frac{d^2 x_1(t)}{dt^2} = -5 x_1(t) + 3 x_2(t) \\ \frac{d^2 x_2(t)}{dt^2} = 2 x_1(t) - 6 x_2(t) \end{cases}$$
(a) set $x_1(t) = X_1 e^{i\omega t}$ & $x_2(t) = X_2 e^{i\omega t}$, deduce the following matrix equation
 $A X = -\omega^2 X$ where $X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$ & $A = \begin{pmatrix} -5 & 3 \\ 2 & -6 \end{pmatrix}$ (4 marks)
(b) find the eigenfrequencies ω of the given coupled system, (5 marks)

6

۰.,

Useful informations

The transformations between rectangular and spherical coordinate systems are :

The transformations between rectangular and cylindrical coordinate systems are :

$\begin{cases} x = \rho \cos(\phi) \\ y = \rho \sin(\phi) \\ z = z \end{cases}$	&	$\begin{cases} \rho = \sqrt{x^2 + y^2} \\ \phi = \tan^{-1} \left(\frac{y}{x} \right) \\ z = z \end{cases}$
---	---	---

$$\vec{\nabla} f = \vec{e}_1 \frac{1}{h_1} \frac{\partial f}{\partial u_1} + \vec{e}_2 \frac{1}{h_2} \frac{\partial f}{\partial u_2} + \vec{e}_3 \frac{1}{h_3} \frac{\partial f}{\partial u_3}$$
$$\vec{\nabla} \bullet \vec{F} = \frac{1}{h_1 h_2 h_3} \left(\frac{\partial (F_1 h_2 h_3)}{\partial u_1} + \frac{\partial (F_2 h_1 h_3)}{\partial u_2} + \frac{\partial (F_3 h_1 h_2)}{\partial u_3} \right)$$
$$\vec{\nabla} \times \vec{F} = \frac{\vec{e}_1}{h_2 h_3} \left(\frac{\partial (F_3 h_3)}{\partial u_2} - \frac{\partial (F_2 h_2)}{\partial u_3} \right) + \frac{\vec{e}_2}{h_1 h_3} \left(\frac{\partial (F_1 h_1)}{\partial u_3} - \frac{\partial (F_3 h_3)}{\partial u_1} \right)$$
$$+ \frac{\vec{e}_3}{h_1 h_2} \left(\frac{\partial (F_2 h_2)}{\partial u_1} - \frac{\partial (F_1 h_1)}{\partial u_2} \right)$$

where $F = \vec{e}_1 F_1 + \vec{e}_2 F_2 + \vec{e}_3 F_3$ and

- (u_1, u_2, u_3) (x, y, z)represents $\left(\rho\,,\phi\,,z\right)$ represents (r, θ, ϕ) represents
- $\left(\vec{e}_x, \vec{e}_y, \vec{e}_z\right)$ $\left(\vec{e}_1, \vec{e}_2, \vec{e}_3\right)$ represents $\left(\vec{e}_{\rho}\,\,,\,\vec{e}_{\phi}\,\,,\,\vec{e}_{z}\,\right)$ represents $\left(\vec{e}_r, \vec{e}_{\theta}, \vec{e}_{\phi}\right)$ represents

for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system

for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system

 (h_1, h_2, h_3) (1,1,1) represents $(1, \rho, 1)$ represents $(1, r, r \sin(\theta))$ represents 7

for rectangular coordinate system for cylindrical coordinate system for spherical coordinate system