UNIVERSITY OF SWAZILAND

FACULTY OF SCIENCE AND ENGINEERING

DEPARTMENT OF PHYSICS

SUPPLEMENTARY EXAMINATION: 2015/2016

TITLE OF PAPER: NUCLEAR PHYSICS

COURSE NUMBER: P442

TIME ALLOWED: THREE HOURS

INSTRUCTIONS:

- ANSWER ANY FOUR OUT OF THE FIVE QUESTIONS.
- EACH QUESTION CARRIES 25 POINTS.
- POINTS FOR DIFFERENT SECTIONS ARE SHOWN IN THE RIGHT-HAND MAR-GIN.
- USE THE INFORMATION IN THE NEXT PAGE AND LAST PAGE WHEN NECESSARY.

THIS PAPER HAS 8 PAGES, INCLUDING THIS PAGE.

DO NOT OPEN THIS PAGE UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Useful Data:

1 unified mass unit $(u) = 1.6605 \times 10^{-27} \text{ kg} = 931.5 \text{ MeV}/c^2$

Planck's constant $h = 6.63 \times 10^{-34} \text{ Js}$

Boltzmann's constant $k = 1.38 \times 10^{-23} \text{ J/K}$

Avogadro's number $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$

Speed of light (vacuum) $c = 3.0 \times 10^8 \text{ m/s}$

electron mass $m_e = 9.11 \times 10^{-31} \text{ kg} = 5.4858 \times 10^{-4} \text{ u} = 0.511 \text{ MeV}/c^2$

neutron mass $m_n = 1.6749 \times 10^{-27} \text{ kg} = 1.008665 \text{ u} = 939.573 \text{ MeV}/c^2$

proton mass $m_p = 1.6726 \times 10^{-27} \ \mathrm{kg} = 1.0072765 \ \mathrm{u} = 938.280 \ \mathrm{MeV}/c^2$

 $1year = 3.156 \times 10^7 \text{ s}$

nuclear radius, $R \approx r_0 A^{1/3}$, where $r_0 = 1.2$ fm

fine structure constant, $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} = \frac{1}{137}$

 $\hbar c = 197 \text{ MeVfm}$

The table of nuclear properties is provided in the next page.

Nuclide	Z	A	Atomic mass (u)	I^{π}	Abundance or Half life
H	1	1	1.007825	1/2+	99.985%
He	2	4	4.002603	0+	99.99986%
Li	3	7	7.016003	$3/2^{-}$	92.5%
Be	4	11	11.021658	$1/2^{+}$	$13.8 \text{ s } (\beta^{-})$
В	5	11	11.009305	3/2-	80.2%
С	6	12	12.00000	0+	99.89%
N	7	15	15.00109	1/2-	0.366%
N	7	18	18.014081	1-	0.63 s
0	8	15	15.003065	1/2-	122 s
0	8	16	15.994915	0+	99.76%
0	8	18	17.999160	0+	0.204%
F	9	18	18.000937	1+	110.0 min
Ne	10	20	19.992436	0+	90.51%
Ne	10	22	21.991383	0+	9.33%
Na	11	22	21.994434	3+	2.60 yrs
Mg	12	21	21.000574	0+	3.86 s
Al	13	27	26.981539	5/2+	100.0%
Si	14	30	29.973770	0+	3.10%
Si	14	32	31.974148	0+	105 yrs
P	15	30	29.978307	1+	2.50 min
P	15	32	31.971725	1+	14.3 days
S	16	32	31.972071	0+	95.02%
Cl	17	37	36.965903	$3/2^{+}$	24.23%
Ar	18	37	36.966776	3/2+	35.0 days
K	19	37	36.973377	$3/2^{-}$	1.23 s
Ca	20	43	42.958766	7/2-	0.135%
Ca	20	47	46.954543	7/2-	$4.54 \text{ days } (\beta^-)$
Sc	21	47	46.952409	7/2-	$3.35~\mathrm{days}~(eta^-)$
Fe	26	56	55.934439	0+	91.8%
Fe	26	60	59.934078	0+	1.5 Myrs
Со	27	60	59.933820	5+	5.27 yrs
Ni	28	60	59.930788	0+	26.1%
Ni	28	64	63.927968	0+	0.91%
Ni	28	65	64.930086	$5/2^{-}$	$2.52~\mathrm{hrs}~(eta^-)$
Cu	29	63	62.929599	$3/2^{-}$	69.2%
Cu	29	64	63.929800	1+	12.7 hrs
Cu	29	65	64.927793	3/2+	30.8%
Zn	30	64	63.929145	0+	48.6%
Ru	44	104	103.905424	0+	18.7%
Ru	44	105	104.907744	$3/2^{+}$	4.44 hrs (β^{-})
Pd	46	105	104.905079	$5/2^{+}$	22.2%
Cs	55	137	136.907073	7/2+	$30.2 \text{ yrs } (\beta^{-})$
Ba	56	137	136.905812	$3/2^{+}$	
Tl	81	203	202.972320	$1/2^{+}$	29.5%
Os	76	191	190.960920	9/2-	$15.4 \text{ days } (\beta^{-})$
Ir	77	191	190.960584	$3/2^{+}$	
Au	79	199	198.968254	$3/2^{+}$	16.8%

Question 1: The Shell Model.....

- (a) The lowest energy levels in the Shell Model, in order of increasing energy, are $1s_{1/2}$, $1p_{3/2}$, $1p_{1/2}$, $1d_{5/2}$, $2s_{1/2}$, $1d_{3/2}$, $1f_j$, ...
 - i. What are the possible values of j for the 1f levels?
 - ii. What is the value of j for the lowest 1f level? Justify your answer.
 - iii. Determine the spin and parity of the ground state of both the $^{40}_{20}\mathrm{Ca}$ and $^{41}_{20}\mathrm{Ca}$ nuclides.
 - iv. In the Shell model, a spin-orbit' interaction splits all the energy levels except the s-type' levels. Why do the s-type levels remain unsplit?
- (b) The low-lying energy levels of ${}^{13}C$ are the ground state $\left(\frac{1}{2}^{-}\right)$; 3.09 MeV $\left(\frac{1}{2}^{+}\right)$; 3.68 MeV $\left(\frac{3}{2}^{-}\right)$ and 3.85 MeV $\left(\frac{5}{2}^{+}\right)$. Interpret these states according to the Shell model.

- (a) Assume that the coulomb force between an α -particle and an electron is negligible.
 - i. Draw a kinematics diagram showing the collision of an α -particle (initially moving at velocity \vec{v}_0) with an electron (initially at rest). [Note: proper labels required]
 - ii. Show that the final velocity of the electron \vec{v}_e is related to the final velocity of the α -particle by

 $v_e^2 \left(1 - \frac{m_e}{m_\alpha} \right) = 2 \vec{v}_f \cdot \vec{v}_e,$

where \vec{v}_f is the final velocity of the α -particle, m_{α} is its mass and m_e is the mass of the electron.

- iii. Using the result in ii), prove that large angle scattering is not possible.
- iv. Based on the fact that large angle scattering of an α -particle is not possible if the target is an electron, and that in an experiment, in which atoms were bombarded with α -particles, large angle scattering was observed, suggest improvements to the plum pudding model of the atom.
- (b) Relax the assumption that the coulomb interaction is negligible.
 - i. Draw the kinematics diagram of Rutherford scattering of a projectile of mass m and charge Ze on a stationary target of mass M and charge Ze.
 - ii. Show that the impact parameter b, is given by

$$b = \frac{zZe^2}{8\pi\epsilon_0} \frac{\cot(\theta/2)}{E_{kin}},$$

where θ is the scattering angle and $E_{kin} = \frac{1}{2}mv^2$ is the kinetic energy of the projectile.

Question 3: Radioactivity and Fission.

- (a) A by-product of some fission reactors is 239 Pu (plutonium-239), which is an α -emitter with a half life of 24120 years. Consider 1 kg of 239 Pu at t=0, [Atomic mass of 239 Pu = 239.052163 u.
 - i. What is the number of ²³⁹Pu nuclei at t = 0?
 - ii. What is the initial activity?
 - iii. For how long would you need to store plutonium-239 until it has decayed to a safe activity level of 0.1 Bq?
- (b) Radionuclides are useful sources of small amounts of energy in space vehicles, remote communication stations, heart pacemakers, etc. Calculate the initial power available from a gram of 210 Po, an α -emitter with an energy of 5.30 MeV and a half life of 138 days. Give your answer in Watts. [Atomic mass of $^{210}_{84}$ Po = 209.982848 u]
- (c) In stars that are slightly more massive than the Sun, hydrogen burning is carried out mainly by the CNO cycle, whose first step is p $_6^{12}$ C \rightarrow_7^{13} N + γ . Estimate the energy of the γ , assuming the two initial nuclei are essentially at rest. Justify any simplifying assumptions you make. [Atomic masses: $_1^1H = 1.007825$ u, $_6^{12}C = 12.00000$ u, $_7^{13}N = 13.005739$ u]
- (d) Consider the nuclear fission reaction $n+^{235}_{92}U \rightarrow^{141}_{56}Ba+^{92}_{36}Kr+3n$.
 - i. Calculate the energy released (in MeV) in the reaction. [Atomic masses: $^{235}_{92}$ U = 235.043915 u, $^{92}_{36}$ Kr = 91.8973 u, $^{141}_{56}$ Ba = 140.9139 u and neutron mass is 1.008665 u]
 - ii. You wish to run a 1000 MW power reactor using $^{235}_{92}$ U fission. How much $^{235}_{92}$ U is required for one day's operation?

Question 4: Form Factors......

- (a) The differential cross section for Rutherford scattering is proportional to $\sin^{-4}(\theta/2)$ where θ is the scattering angle. Show that this term leads to an infinite cross section in the limit $\theta \to 0$. Explain why, in reality, experimental differential cross sections remain finite as $\theta \to 0$.
- (b) The nuclear electric form factor is

$$F(ec{q}) = \int
ho_{ch}(ec{r}) \exp(-iec{q}\cdotec{r}) d^3ec{r},$$

where ρ_{ch} is the charge density.

i. In the case of spherical symmetry, we have only the radial dependence. Show that $F(\vec{q})$ becomes

$$F(q^2) = \frac{4\pi}{q} \int \rho_{ch}(r) \sin(qr) r dr$$

- ii. Assuming that the nuclear charge density is uniform and that the nucleus is a sphere of radius R, obtain an expression for the form factor of a nucleus.
- (c) Show that, for high-energy elastic scattering where the projectile rest mass may be ignored, the magnitude of the momentum transferred q from the incident particle is given by

$$(cq)^2 = 4E^2 \sin^2(\theta/2),$$

where E is the energy of the projectile, and θ the scattering angle.

Question 5: Short Answer Questions.....

- (a) Write brief notes on the following instruments
 - i. Geiger-Muller counter (An Ionization Chamber)
 - ii. Scintillation detector
- (b) Discuss three modes by which a photon can interact with matter.
- (c) Discuss the essential features of the strong nuclear force.
- (d) Show that the decay $n \to p + e^-$ cannot conserve angular momentum.
- (e) Write short notes on the following.
 - i. Internal conversion
 - ii. Bremsstrahlung