UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATIONS 2009

B.A.S.S. I / D.COM I

TITLE OF PAPER

: INTRODUCTORY MATHEMATICS FOR BUSINESS

COURSE NUMBER

MS 101 AND IDE MS101

TIME ALLOWED

THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

3. USEFUL FORMULAE ARE PROVIDED

AT THE END OF THE QUESTION PAPER.

SPECIAL REQUIREMENTS

: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

- 1. (a) Use the long division method to find the quotient and remainder when $3x^3 + 2x^2 + x 5$ is divided by x + 1. [6 marks]
 - (b) When the polynomial $x^4 + ax^3 + 11x^2 + bx = 12$ is divided by (x + 2) the remainder is 6. Given that (x + 4) is a factor of the polynomial, find the values of a and b.
 - (c) Find all the real roots of the polynomial

$$x^4 + 9x^3 + 21x^2 - x - 30 = 0$$

[7 marks]

QUESTION 2

- 2. (a) Solve the following equations for x
 - (i) $\log_2 x + \log_2(x 7) = 3$

[5 marks]

(ii) $2^{x+1} = 3^{x-1}$

[5 marks]

- (b) Sipho wants to buy a new computer after three years that will cost E5000. How much should he deposit now, at 6% interest compounded monthly to give the required E5000 in 3 years? [5 marks]
- (c) Find the time required to treble a certain amount compounded continuously at 12% interest.

[5 marks]

3. (a) Calculate A^TB if the matrices A and B be given by

$$A = \begin{pmatrix} 1 & -2 \\ 4 & 3 \\ 6 & 5 \\ 3 & 1 \end{pmatrix} , \quad B = \begin{pmatrix} 1 & 5 \\ -2 & 4 \\ 1 & 3 \\ 3 & 1 \end{pmatrix}$$

[6 marks]

(b) Use Cramer's rule to solve the following system of equations

$$2x_1 + x_2 - x_3 = 5$$

$$3x_1 - 2x_2 + 2x_3 = -3$$

$$x_1 - 3x_2 - 3x_3 = -2$$

[14 marks]

QUESTION 4

4. (a) Use the general formula for the rth term to find the coefficient of x^6 in the binomial expansion of

$$(1+x^2)^8$$

[5 marks]

[10 marks]

- (b) Write out the first four terms in the expansion of $(1+x)^{-2}$. [5 marks]
- (c) Use Cramer's rule to solve the following system of equations

$$x + 2y + z = 1$$

$$x - y - z = 0$$

$$2x + y + z = 3$$

- 5. (a) If the 8th term of a geometric progression is 243 and the 5th term is 9, find the first three terms of the geometric progression. [5 marks]
 - (b) Find the 20th term of the geometric progression 2, 10, 50, 250,.... [5 marks]
 - (c) Find three numbers in arithmetic progression such that their sum is 15 and their product is 80. [5 marks]
 - (d) Convert 0.818181 into an equivalent common fraction [5 marks]

QUESTION 6

- 6. (a) Find the equation of a straight line passing through the intersection of 3x y = 9 and x + 2y = -4, parallel to 3 = 4y + 8x [10 marks]
 - (b) Find the centre and radius of a circle defined by the equation

$$x^2 - 6x + y^2 + 10y + 25 = 0$$

[10 marks]

7. (a) Solve the complex quadratic equation

$$z^2 - (3 - i)z + 4 = 0$$

and express you answer in the form x + iy

[7 marks]

- (b) Evaluate $\frac{(1+i)(2+3i)}{1-i}$ and write the solution in the form a+bi [4 marks]
- (c) Prove by mathematical induction that the following formula

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \ldots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$$

is valid for all positive integers.

9 marks

END OF EXAMINATION

Useful Formulas

$$1. \sin^2 \theta + \cos^2 \theta = 1$$

2.
$$sin(A + B) = sin A cos B + cos A sin B$$

3.
$$sin(A - B) = sin A cos B - cos A sin B$$

4.
$$cos(A + B) = cos A cos B - sin A sin B$$

5.
$$cos(A - B) = cos A cos B + sin A sin B$$

6.
$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

7.
$$\sin 2A = 2\sin A\cos A$$

$$8. \cos 2A = \cos^2 A - \sin^2 A$$

Degrees	0°	30°	45°	60°	90°
$\sin heta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
an heta	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	