University of Swaziland

Re-sit Examination – July 2017

BSc I, BEd I, BEng I, BASS I

Title of Paper: Introduction to CalculusCourse Number: MAT112Time Allowed —: Three (3) hours

Instructions:

- 1. This paper consists of 2 sections.
- 2. Answer ALL questions in Section A.
- 3. Answer ANY THREE (3) questions in Section B.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

- A.1 a. $\lim_{x \to 2} \left(\frac{8 x^3}{x^2 4}\right)$ [4 marks] b. $\lim_{\theta \to 0} \left(\frac{\tan 4\theta}{\theta}\right)$ [3 marks] A.2 Find $\frac{dy}{dx}$ if a. $y = \left(1 - 4x^3\right)^{15}$ [3 marks] b. $y = \frac{2 + 3x^2}{3 - 2x^2}$ [4 marks] c. $y = \ln(\sec x + \tan x)$ [4 marks]
- **A.3** Use the *limit definition* to find $\frac{df}{dx}$ given

$$f(x) = \frac{1}{x}.$$
 [7 marks]

A.4 Integrate

a. $\int_{0}^{1} \frac{x \, dx}{1 + x^{2}}$ [3 marks] b. $\int x^{2} \sin(\frac{1}{2}x) \, dx$ [4 marks] c. $\int_{0}^{\frac{\pi}{4}} 8 \tan^{2} \theta \, d\theta$ [4 marks] d. $\int \frac{dx}{x - x^{2}}$ [4 marks]

Section B Answer ANY THREE (3) Questions in this section

.1 a. Evaluate i. $\lim_{x \to 0} \frac{\sqrt{4+x} - \sqrt{4-x}}{x}$ ii. $\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta}$		[7 marks] [3 marks]
r	$y = \sqrt{4x - 1}.$	[10 marks]
B.2 a. Find $\frac{\mathrm{d}y}{\mathrm{d}x}$ and simplify g	iven $y = rac{e^x - e^{-x}}{e^x + e^{-x}}.$	[6 marks]
B.2 a. Find $\frac{dy}{dx}$ and simplify g — b. Consider the function	$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$	[6 marks]
		[6 marks]
	$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$ $y = 10 + 18x^2 - x^4.$	[6 marks] [6 marks]
b. Consider the function i. Find the stationar	$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$ $y = 10 + 18x^2 - x^4.$	

B.3 a. Differentiate and simplify

.

$$y = \ln(1+x^2) - \tan^{-1}x - \frac{x}{1+x^2}.$$
 [8 marks]

b. A closed cylindrical can is to hold 54π litres of liquid. Find the dimensions of such a can which requires the minimum material to construct. [12 marks]

· · ·

B.4 a. Integrate	$\int e^{-2x} \sin 3x \mathrm{d}x.$	[10 marks]
b. Derive the formula	$A = \pi r^2$	
for the area of a circle with radius r .		[10 marks]
B.5 Integrate a. $\int \frac{\mathrm{d}x}{x}$		[13 marks]

b.
$$\int_0^3 \frac{\mathrm{d}x}{\sqrt{9-x^2}}$$
 [7 marks]

1

END OF EXAMINATION