UNIVERSITY OF SWAZILAND

· ·

SUPPLEMENTARY EXAMINATION 2012

TITLE OF PAPER: DEMOGRAPHIC METHODS

CORSE NUMBER: DEM 202

TIME ALLOWED: 3 HOURS

INSTRUCTIONS: ANSWER <u>ANY FOUR</u> QUESTIONS. ALL QUESTIONS ARE WORTH 25 MARKS EACH.

REQUIREMENTS: CALCULATOR

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR

a) Using the data provided in Table 1, compare and discuss the death rate for males in Mauritius using the appropriate method of standardization. (12)

TABLE 1: Population and deaths (in thousands) by Age for Mauritius and Germany

Mauritius		Germany			
Age	Population	Deaths	Population	Deaths	
0-14	161.4	0.692	6590.8	9.3	
15-24	98.3	0.102	4516.7	6.7	
25-34	59.2	0.152	4207.4	6.4	
35-44	39.7	0.228	4709.9	13.9	
45-54	36.8	0.437	3508.6	25.6	
55-64	23.4	0.838	2412.7	19.4	
65+	14.1	1.422	3368.7	253.0	

- b) Table 2 represents the number of live births and the number of infant deaths by age at death for Romania. From these data calculate for each year:
 - i. the infant mortality rate (IMR). (2)
 - ii. the neo natal mortality rate. (2)
 - iii. the post neonatal mortality rate (2)

TABLE 2: Number of live births and infant deaths by age for Romania, 1970 and1980

	Infant deaths			
Age (months)	1970	1980		
0	12276	7783		
1	3625	3009		
2	2639	2461		
3	2101	2155		
4	1384	1584		
5	829	1151		
6	530	826		
7	365	621		
8	274	448		
9	227	450		
10	178	339		
11	162	283		
Total live births	527 764	427 034		

- c) These rates suggest that there has been a shift in the age pattern of mortality. Describe the shift. (4)
- d) A net nuptiality table is a type of double-decrement life table. Which are the two forces of decrement, and which is the state being decremented? (3)

- (a) Describe as clearly as you can the cohort method for adjusting the conventional infant mortality rate, giving the relevant formula as well. (5)
- (b) It is often said that women generally live longer than men. Discuss this statement. (5)
- (c) Using Table 3, construct a gross nuptiality table (15)

Age	No. of women (in thousands)	No. of first marriages (in thousands)
15-19	311.1	19.6
20-24	228.0	18.1
25-29	155.0	4.5
30-34	140.4	1.4
35-39	138.7	0.7
40-44	130.4	0.4
45-49	109.8	0.3
50-54	98.7	0.1

TABLE 3: Number of Women and First Marriages by Age

Question 3

- a) On the basis of the data on Table 4, calculate:
 - (i) the age specific fertility rates and interpret one of them (8)
 - (ii) the gross reproduction rate and interpret it (5)
 - (iii) the mean age of child bearing (3)
 - (iv) the total fertility rate (3)
- b) Define a parity progression ratio and present a formula for its calculation (3)
- c) What additional information is needed to compute the net reproduction rate?(3)

Age	Population	Births	
15-19	280,018	36,853	
20-24	254,149	71,119	
25-29	233,239	64,160	
30-34	161,081	38,803	
35-39	144,989	28,348	
40-44	109,000	13,708	
45-49	113,341	7,830	

 TABLE 4: Mid Year Female Population by Age (1977) and children born to them, Malawi.

Additional information: the Sex Ratio at Birth is 1.04

Question 4

- (a) Distinguish between lifetime and intercensal migration. (4)
- (b) List the major sources of migration data. (4)
- (c) What critical assumptions underlie the census survival ratio method for calculating netintercensal migration rates? (5)
- (d) The following matrix shows the region of residence of a certain population according to the census enumeration and according to their reported place of birth. Using the data in Table 5, calculate the following:
 - I. Out-migration rates from each region (6)
 - II. The in-migration rates for each region (6)

Table 5: Enumerated population classified by region of birth and region of residence.

Region of birth	North	Central	South	Total
North	566193	41242	25792	633227
Central	11388	1821940	66579	1899907
South	11586	87987	2371431	2471004
Total	589167	1951169	2463802	5004138

Region of Residence/Enumeration

- a) Distinguish between complete and abridged life tables. (2)
- (b) Use the period life table below to answer the following questions:
 - (i) Compute values in the gaps numbered (i) to (iv). For each, give the notation and formula, where applicable. (8)
 - (ii) What is the probability of a new born surviving from birth to age 50?(2)
 - (iii) How many years would a person who survives to age 20 expect to live in the age interval 20-55? (3)

Now, conceive of the life table as a stationary population. Answer the following questions:

- (i) What is the total size of the population? (2)
- (ii) What is the crude birth rate? (2)
- (iii) What is the death rate above age 70? (2)
- (iv) What is the annual number of deaths between ages 60 and 65? (2)
- (v) What is the mean age at death? (2)

Table 3: Abridged life table for England and Wales females, 1985

Age	nqx	l _x	ndx	_n L _x	T _x	ex
0-1	0.008252	100000	825	99258	7756261	77.56
1-4	0.001630	99175	162	396311	7657003	77.21
5-9	0.000905	99013	89	494842	7260692	73.33
10-14	0.000935	(i)	93	494388	6765850	(iv)
15-19	0.001409		(ii)		6271462	63.46
20-24	0.001534	98692	152	493080	5777654	58.54
25-29	0.001818	98540	179	492253	5284574	53.63
30-34	0.002826	98361	278	491110	4792321	48.72
35-39	0.004410	98083	432	(iii)	4301211	43.85
40-44	0.007199	97651	693	486523	3811876	39.04
45-49	0.012348	96958	1197	481798	3325353	34.30
50-54	0.020831	95761	2005	473793	2843555	29.69
55-59	0.035455	93756	3324	460470	2369762	25.28
60-64	0.058507	90432	5291	438933	1909292	21.11
65-69	0.087310	85141	7434	407120	1470359	17.27
70-74	0.139189	77707	10816	361495	1063239	13.68
75-79	0.220993	66891	14782	297500	701744	10.49
80-84	0.352367	52109	18362	214640	404244	7.76
85+	1.000000	33747	33747	189604		5.62

- (a) Someone proposes calculating an infant mortality rate using the number of births in given calendar year t in the denominator and the number of deaths of persons under age 1 in the same calendar year, t in the numerator arguing this would better reflect the mortality experience of the birth cohort.
 - I. Why might this suggestion not work well in practice? (3 marks)
 - II. Suggest a modification to the proposal which should lead to an infant mortality rate which better reflects the experience of the births occurring in year t. Use a Lexis diagram to illustrate the rationale behind this argument. (10 marks)

Ţ

- a) What are the assumptions of a stable population? (8)
- b) Give 2 uses of a stable population. (4)