UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION PAPER 2015

TITLE OF PAPER	:	INFERENTIAL STATISTICS
COURSE CODE	:	ST 220
TIME ALLOWED	:	TWO (2) HOURS
REQUIREMENTS	:	CALCULATOR AND STATISTICAL TABLES
INSTRUCTIONS	:	THIS PAPER HAS SIX (6). ANSWER ANY THREE (3) QUESTIONS.

Question 1

[20 marks, 9+8+3]

(a) A pharmaceutical company is considering introducing new, easier to open, packaging for a drug used in the treatment of arthritis. The company seeks the views of two groups of patients. One group consists of those who have been using the existing packaging for a long time and the other group consists of new users. The preferences are shown below.

	Prefer new packaging	Prefer existing packaging
Long-term users	35	32
Recent users	25	8

Investigate, at the 5% significance level, whether there is evidence of a difference between the two groups of patients in their packaging preferences and briefly state your conclusions.

- (i) Perform a χ^2 test at the 5% significance level to investigate whether there is an association between usage classification and the package preference. State your null hypothesis and report your conclusions.
- (ii) Estimate the proportions who prefer the existing packaging for each of the two groups and calculate an approximate 95% confidence interval for the difference in these two proportions.
- (iii) You could perform a hypothesis test to examine whether there is a difference in the proportions of those who prefer the old packaging in the two groups. Without performing this test, outline briefly how its results would relate to your answers to parts (a) and (b).

Question 2

[20 marks, 6+14]

A textile manufacturer produces long rolls of wide cotton cloth for making bed linen. The spun cotton thread he uses has occasional irregularities which produce flaws in the woven fabric. As part of a quality control exercise, a random sample of 180 ten-metre lengths of the cloth is examined carefully and the number of flaws in each length is noted. The results of this exercise are shown in the table below.

Number of flaws per	
ten-metre length, x	Frequency, f
0	30
1	58
2	49
3	29
4	7
5	7
> 5	0

- (a) Calculate the sample mean and sample variance, showing all working clearly. Comment on the sample mean and variance values in relation to the Poisson distribution.
- (b) Perform a χ^2 goodness-of-fit test at the 5% significance level to investigate the null hypothesis that the number of flaws in ten-metre lengths of cloth has a Poisson distribution. Show all your working and report your conclusions.

Question 3

[20 marks, 4+5+7+3+1]

Gross mean weekly earnings (y, in \pounds per week) for a sample of male clerical workers of varying ages (x, in completed years) in a large company are as follows.

Earnings y	215	259	348	387	534	660	726	$\sum y = 3129$	$\sum y^2 = 1632011$
Age x	18	20	23	28	35	45	55	$\sum x = 224$	$\sum x^2 = 8312$

You are also given that $\sum xy = 116210$.

- (a) Plot a scatter diagram of these data and comment on their suitability for simple linear regression analysis.
- (b) Write down the models for
 - (i) simple linear regression of y on x,
 - (ii) simple linear regression of x on y.

Define your notation and explain clearly which model is better suited to fit the variables and data as defined in the table above.

- (c) (i) Fit the simple linear regression model of y on x to the data above, find the equation of the fitted regression line, draw this line on your scatter diagram, and use the equation to estimate the mean weekly earnings at age 50.
 - (ii) You are given that the estimated standard error of the slope of the regression line is 1.128. Use this result to test for the significance of the regression slope at the 5% level, and state your conclusion clearly.
 - (iii) Your line manager asks you to use your model to estimate the mean weekly earnings at age 70. How would you answer him?

Question 4

[20 marks, 10+6+4]

(a) Random samples are taken from two populations with distributions $N(\mu_X, \sigma^2)$ and $N(\mu_Y, \sigma^2)$ (i.e. their variances are the same). The summary statistics for the two samples are shown in the following Table:

	Sample	Sample	Sample		
	Size n	Mean m	Variance s ²		
x-data	19	7.0	1.69		
y-data	25	5.1	2.56		

Compute a 95% confidence interval for the difference $\mu_X - \mu_Y$ between the two population means. Does the result support the view that there is no true difference between the population means? (Explain your reasoning!)

(b) A short-stay car park in a shopping area has spaces marked out for 90 cars. A local councillor notices that there are always some vacant spaces. He puts forward a plan to create a garden and seating area using part of the car park. This would reduce the number of parking spaces to 78.

- (i) From a random sample of 33 users of the car park, 26 say that the car park will be too small if this plan is carried out. Carry out a test, at the 5% significance level, to determine whether more than half of the users of the car park think it will be too small.
- (ii) The number of occupied spaces, x_i in the car park is recorded on each of 16 randomly chosen occasions during shopping hours. The results may be summarised as follows:

$$\bar{x} = 59.9$$
 $s = 7.83$

Construct a 95% confidence interval for the mean, μ , of the number of spaces occupied in the car park during shopping hours. Assume that the sample is drawn from a normal population.

Question 5

[20 marks, 8+12]

(a) The question of interest is whether the subject matter of the postgraduate courses is relevant to the level of female participation. The MSc courses are either finance or management oriented. The MBA is predominantly a management course. The MSc students are generally younger than the MBA students, who have work experience and are often sponsored by their employers. Subdividing the MScs into finance and management gives the following table.

	MSc (finance)	MSc (management)	MBA (management)
Male	611	105	169
Female	363	103	51

- Analyse these data in a manner that allows you to comment on the relationship between the type of Master's course studied and the proportion of female students, and also to comment on any influence of the type of subject matter. Write a short report (5 or 6 sentences) to summarise your findings.
- (b) A trial is undertaken to investigate the effect on fuel economy of 3 fuel additives A, B and C, where A and B are new and C is the current standard additive. The same driver drives the same car on a fixed test route during 20 working days. The additive used on each day is randomly assigned so that A and B are each used for 5 days and C is used for 10 days. The response variable measured each day is Y, the number of miles per gallon (mpg) achieved.

Additive	y	Total
A	39, 35, 37, 36, 38	$\sum y_A = 185$
В	36, 41, 39, 40, 39	$\sum_{n=1}^{\infty} y_B = 195$
С	37, 33, 30, 34, 36, 34, 31, 36, 34, 35	$\sum_{i=1}^{n} y_{C} = 340$

The results are shown in the following table.

You are given that the sum of squares of the observations is 26078.

Carry out an analysis of variance to test for differences between the effects on Y of the additives. State clearly your null and alternative hypotheses and present your conclusions.

Question 6

[20 marks, 3+6+3+8]

A population consists of the five values 1, 4, 9, 16 and 25.

- (a) Calculate the population mean and variance.
- (b) Write down all the samples of size two that may be drawn, with replacement, from this population, and calculate the sample mean of each.
- (c) Let \bar{X} denote the mean of a random sample of size two drawn, with replacement, from this population. Write down the expected value and variance of \bar{X} .
- (d) For \bar{X} as in part (iii), find $P(\bar{X} > 16.5)$. Find also an approximation to this quantity, using an appropriate Normal approximation [use of a continuity correction is not expected], and comment briefly on your results.

APPENDIX 1: LIST OF STATISTICAL TABLES

TABLE 1

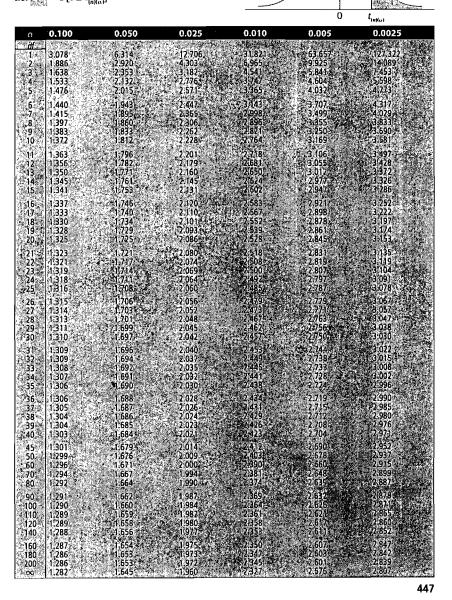
The standard normal distribution (z)

This table gives the area under the standard normal curve between 0 and z i.e. P[0 < Z < z]

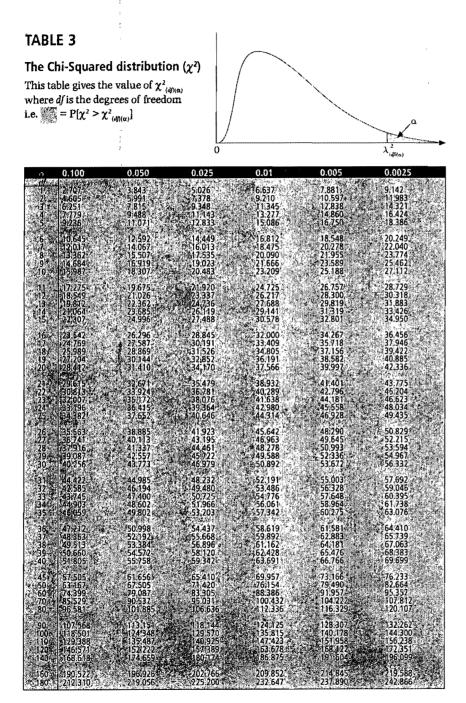
e. r [·	0-2-7	•]						0	2	
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0:0080	0.01201	0.0160	0.0199	0.0239	0.0279	0,0319	0.0359
0.1÷	. 0.0398	0.0438	0.0478	10.0517	.0.05575	. 0.0596	0.0636	0.0675	0.0714	. 0.0753
0.2	0.0793	0.0832	0.087.1	0.0910	0.0948	0.0987	0.1026	. 0.1064	0.1103	.0.1141
0.3	0.1179	0.1217	0.1255	0.1293	` `0.1331";	0.1368	0.1406	0.1443	0,1480	. 0.1517
14	0.1554	£10.1591	0.1628	0.1664	0,1700.4	÷0.1736	0.1772	0,1808	0.1844	0.1879
0.5	0.1915	0.1950-	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
	and the		7. ANY							物類的
16 🗸	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
).7 ₅ .		0.2611			0.2703	. 0.2734	0.2764	1,0.2793	0:2823	0.2852
.8	0.2881	0.2910	.0.2939	. 0.2967	0,2995	s. 0.3023 ₇	0.3051	0.3078	.0.3106	0.3133
).9:	0.3159	0.3186	0.3212	20.3238	0:3264	e_0.3289	0.3315	-0.3340	-0:3365	0.3389
0;;	0,3413	0.3438	, 0,946 J.	v ≈0.3485 ∲	0.3508	. 0.3531	\$ 0:3554	1.3557	0:3599	0.3621
1		() () () () () () () () () () () () () (S AGEST		6.5356		0.3810	0.3830
	0.3643	0.3665.7	0.3686	0.3708	0.3729,	0.3749		0.3790	0.3997	SCHL SHE STORY
2	0,3849	0.3869		0.3907-	0,3925	0.3944	0.3962	0.3980	0.4162	0.4015
364	0.4032.	0.4049	0.4066	e 0.4082	0.4099	0.4115.	0.4131	0.4147	0.4306	0.4319
4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4506 · 0.4429 ·	AND THE REPORT
5	0.4332	0.4345	0.4357	2 0.4370	, <mark>10.4382</mark> ,	. 0.4394	0.4406 -	0.4418	2 U.4423	. 0,4441.
6.	0:4452 -	0,4463	0.4474	0 4484	0.4495	0.4505	0,4515	0.4525	0.4535	0.4545
7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.46162	014625	0.4633
8	0.4641+	0.4649	. 0.4656	0.4664	0.4671	0.4678	0.4686	0,4693	0.4699	
9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
.0.3	12 Sec. 2 Sec. 2 Sec. 2	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	40.4812	0.4817
	这位的		. P. A. Miles							Sec. Sec. 1
	0.48217,	. 0 4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850, 1	0.4854	0.4857
2	0.4861	0.4864	0 4868	0.4871	0.4875	0.4878	0.4881	0.4884	0,4887,	0,4890
3.6	0.48928	0.48956	0.48983.	0.49010	0.49036	0.49061	0.49086	0.49111	0.49134	0.49158
4	0.49180	0.49202	0.49224	-0:49245	0.49266	+0:49286	0.49305	0:49324	0.49343	0.49361
.5	0.49379	0.49396	0.49413	1.0.49430	0.49446	0.49461	0.49477	0.49492.	0.49506	0,49520
	1. 16.74	(1917) A 14			5.57 ± 7	1 (A) (A)	No.	2.1.15和	14 A.	
.6 +	0.49534	0.49547	0.49560	0.49573	10.49585,	0.49598	0.49609	0.49624	and the second	0,49643
7.	0,49653	0,49664,	0:49674	0.49683	0.49693	0:49702	0.49711	0.49720		0.49736
8	0,49744	0.49752	0.49760	0.49767	0.49774	3.7 (6.1	20.49788	0.49795	0.49801	0,49807
9,3	0.49813	×0,49819	0.49825	0.49831	. 0.49836	0,49841	0.49846	0.49851	0,49856	0.49861
0	0.49865	0.49869	. 0.49874	0.49878	0.49882	0.49886	-0.49889	0.49893	* 0.49897	0.49900
	10 m 10 m			見りる	41041			2 A	D.49926	0.49929
12	0.49903	0.49906	0.49910	0,49913.		0.49918.	0.49921-	0.49924	0.49926 0.49948	「「「「「「「「「「」」」」
2	0,49931	0.49934	0:49936:	0.49938	0.49940	0.49942	0.49944	0.49946	0.49946	0.49950
35	0.49952	0.49953	-0.49955	0.49957	0.49958	0 49960	0,49961.	>20月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	0.49975	0.49905
4,	and a state of the state of the state	0.49968	0.49969	. 0.49970		0.49972	19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1937 mil 347 high 25	0.49973	0.49970
5.	0.49977	0.49978	0.499/8	₩0.49979,	* 0.49980	<u>, 0</u> .49981	40:49981	0.49982)	0.43363	0.43763
6	0.49984	0.49985	0.49985	10,49986	0:49986	0.49987	0.49987	0.49988	0.49988	0.49989
.o. .7	0.49989	0.49985	20 August to the second	* 0.49990 * 0.49990	出版的 计建筑分子计划 法称		0.49991	0.49992	0.49992	
.8'-	0.49993	0.49993	0.49993		10 9 8 46 d to 08 h 2 1		0.49994	0.49995	0.49995	
9r	0.49995	0.49995		+ 0.49996			0.49996	0.49996	0.49997	64 - C
1.0	0.49997	初始了。 全国市场的中华生生		0.49997			0.49998	0.49998	0.49998	0.49998
10	10.9222/				1					

TABLE 2

 $z \sim N(0;1)$


tiller

z


0

The t distribution

This table gives the value of $t_{(n)(\alpha)}$ where *n* is the degrees of freedom i.e. $[t_{(n)(\alpha)}] = P[t \ge t_{(n)(\alpha)}]$

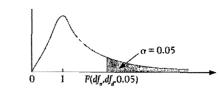

σ

TABLE 4 (a)

F distribution ($\alpha = 0.05$)

The entries in this table are critical values of F for which the area under the curve to the right is equal to 0.05.

			Window Law Hold	Degi	ees of fro	eedom fo	r numera	itor			
1		* 1127	2	21 3 - 1	A172	¥ \$ \[6.14		8.	1974	F10 51
		161.4 18.5	199.5 V 19.0	2,15,72 i * 10,5 i	224.6	230.2	234,55	236.8	238.9	计算行 计算行	241-97
		18.5	*9.55.1	9.78	9.12	9,014	19:3 8 94	19.4	194 (s.	i+19.4 + 2 78:81 + 7	19.4
1000	4	2.71	6.94	6.59	6.39~	36.26	27.0.24 72.16	8.88 1≤≤€6,09.,5	6.00 6.11	6.00	×8,79, 5.96
1910 - 1944 1910 - 1914	5 × 1	6.61	5.79	5.41	5.19	5.05	4 05	4.88	1.07	ATT	24.74
							1.04			~ 5.5	
	6	5.99		4.76	4:53	4391	4.28	4.24.5	4.15.0	4.10	4.06
6	7.,*	5.59	4.74	4.35	4.12	3.97	3.871	12 3.79	1671 -	3.68	3:64.
	* 8	s 5.32	4.46	4.07	3,84	3.69	3,58	3:50	5 3.44 5 ((* 1 <u>39</u> - 1	3.354
	. 9≦t	5.12	. 4.26	.3.86	3.63	13.48	3 (3,37)	2#3 29 2	3.23	3.18.	13.1Az
_	a,10 .∛	4.96	4,107 :	3.71	3.48	- 3/33/4	A 3.225	3.14.5	-	;02	2.98,
ato			$c_{f} = c_{f}^{(1)}$			$\gamma < 2\gamma$			5 (2.40) 5	t de l'Apr	
mim	11 ·	4.84	3,98,44	3.59	23.36 <u>7</u> .5	3.20 4.	223.091	si 23.01 (j.	- 2:95	2 90	2.85
oua		4.75.2 4.67	3.89 3.81	3.49 3.41	3.26 3.18	23,117 3 (3:03%)	3,00	2.91	1 285). Frijski	2.80 2.71	2.75 2.67.*
or d	13 14	4.60	3.74	**************************************	3.102	2.96	12.94.4	2.76	2.70	2.65	2.60
t m	15	4.54	103 68	3.29	3:06	A 2 90 1		5. 5757	2.64	2.59	2 54
Degrees of freedom for denominator				1. 1. 1. 1. 1.	1.5				5. C		
f fre	16	4.49	3.63	3.24	3.01	2.85	2,74	2.66	2(59)	\$2.54	2.49
0 53	17	4.45	3.59+4	3.20	2.96 1.	2,81, 4	C 2.70	2 261	2,592	2 49-2	2.45
gree	a 18 👘	4.41	3.55	3,16	2.93	2.775	2:66	2,58.	26)	2.46	2.41
Dei	4 19	4.38 🚑	ari3,52	3.11	2.90	2.74	2,637	2.54	2 48	<u>, 7</u> ,42 , -	2138
10.00	Ş.20 .	4.35	3.49	. 3.10	2.87	2.71	372:60	22:51	12,45	2.39	2.35
								2 (e se		[0, i]	
and the	21 22	4.32 4.30	3 47 3 44	3.07 173.05	2.84	2,68 2,66	2.57	2.49 r 2.46	5.2.42.2 67. j. j. j.	72:37 e : 2 34	2.32 2.30
1	22	4.30	3.44	2000 - 1 - 100 E 10	2.80	2.64	4-22 X Li 2 53 X	2 44 44	₩2,40 ² 11 \$ ¹ 2137 ¹	2.32	2.30
5. T. J. S.	24 . 24 .	4.26	1-3.40 E	3.01 2	2.78	2.621	12.51	2.42	2.36	2,30	2:257
Sec. 1	25	4.24	339	2.99	2.76	2.60	2 49	2 40 2	1954	2.28	2 24
1940-004er	5 P -	io en co	1.1					設備の数			
A Division		4.17	3.32	ú-2.92 - 1	2.69	2.53	2:42-1	2 2 33 34	2.27	2.21	2.16
	40	4.08	53:23	2.84	2.61	2:45	2.34	2.25	E.2 18	Contraction of the second	2.08
101.24	60,	4.00	9.15	2.76	2-2.53	。12.37年	2.25	200	2.00	2.04	99
	120	3.92	3.07	2.68	2.45	2 2 2 9	2:18	7.09	2021	e 1,96	11916
	° ∞ '	3.84	3.00	2.60	237	2.21 *	2,10	201-24	1,949	1.88	F1.83÷

TABLE 4 (a) continued

F distribution ($\alpha = 0.05$)

	×								
	,		Denree	s of freedo	m for nu	merator			
	2°#12	-	20	24	30	40	* 60	120	<u>_</u> 00
20 A 1	243.9	245.9	248	249.1	250.1	R251.1**	-252.2	253.3	254.3
14.7	19,4	19.4*	19.4	19.5	19.5	19.5	19.5	19.5	19.5
1.53	8,74	8.70	8.66	8.64**	8.62	8.59	8:57	8.55	. 8.53
×44	5.91	5.86	5 80 🗸	5,77	\$ 5.75	5,72	5.691	5.66	5.63
P 51	4.68	4.62	4.56	4.53	4.50	4.46	4.43	4,40	4.37
			742,09					计算机	
- 6	4.00	3.94	9.87	3.84	J.3.81	J≓3.77	3.74	3.70	43.67
5. 7.	3:3'57 , '	3,51		e (3.41-	3.38 🤇	3.34	3.30	Se 3.27	3.23
22 8 S. 1	3.28	· /3,22 j. r	3.15	3.12	3.08	3.04	:	S 2.97 ↔	2.93
2:49	3.07	- 63 01, 1	- 2:94 1/	2.90	2.86	2.83	2.79	2.75	2,71
€ 10 × 2	2.91	12,85	32.77	2.74	2.70	2.66	2.62	2.58	2.54
ato			1. S. C. M.		la pel s				
	2.79	2.72	2.65	2.61	2.57	2.53	2,49	2:45	2.40
01 12	2.69	2.62	2.54	-2.51	2.47. 	2.43	2.38	2.34	2.30
P 13	2,60	3 2,53	2:46	a 2 42 1	2,38	2:34	- 21302	2.25 2.18	T 2:21 2:13
of m	2.53	C 2:46	2.39	2.35 7.29	2.31	2.27 24, 2.20 4		2-10 2-11	2.15 7 2.02 -
- 15- 	2,48	**.2.40	- 2.331 A - 19 e		5 2.4 <u>2</u> %	2.20 M	2.10. Ju.		
Degrees of freedom for denominator 0 81 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 427	2,35	2.28	7.24	2.19	2.15	2 11	2.06	2.01.
6 16 17 17 17 17 17 17 17 17 17 17	i 2.38	231	2.23	2.19	2.15	2.10	2,06	2.01	1.96
1894	2:34	2,27	12.19	2.15.21	2.11	2.06	2.02	1.97	1.92
6an 19	2331	2.23	12.16	211	2.07	2.03	² 1.98	1.93	- 1.88
20	2 28	2.20	4-242.04	\$** 2.08 ¥*.	2.04	1.99	o 1:95 🖬	- 1 90 🖆	1.84
			网络合态				- S		
· 21.4	2 25	2.18	2.10	7 2.05	2.01		i.92 j	1.87	· 1.81
1+224 j	2:23	2,15	2.07	2,030,	1.98	1.94.*	i 1.89. i .	1.84	1.78
123	2.20	2.13	\$2:05 -	2.01	1,96	1.91	1.86	1.81	1.76
24	2,18	2.11	2 031	1.98	1,94	、1.8 9号	1.84	· 1:79 12	211.73(2)
25	216	2 09	.2.01	1.9614	1,92	ity 1.87 🔅	,1.82 🐤	1.17	2:1.71
	奉 悦 八		制器的		1744 (
₹ 30 ₂ -	2.09 − i	2.01	1 93	- 1.89	1.84	1.79	1.74	1.68	SK (.62
40.	2.00	1.92/ 🙏	1,841	. 1.79. <u>.</u>	1.74.4	States of the states	1,644	5. 1.58 M.	seisi
4 60¥	1.92 5	⊊1 ⁷ 84 ⊴i	A175 .	- 1.70	a 1,65 ≬	1.59	1.153	2 41 47 -	1.39
.120 .	1.83	1.75	1.667	1.61	1.55	(v+ 1.50°).	1.43	, 1,35 , , , , , , , , , , , , , , , , , , ,	- <u>6</u> _1.25
×∞	(** [75•3*	1.67	(1 157 ···	1:52	1,46	1.39	11:32 %	3 41.22 法	1.00

APPENDIX 2: LIST OF KEY FORMULAE

MEASURES OF CENTRAL LOCATION

.

Arithmetic mean Ungrouped data

Grouped data $\overline{x} = \frac{\sum_{i=1}^{m} f_i x_i}{n}$

 $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$

Mode Grouped data

$$M_{o} = O_{mo} + \frac{c(f_{m} - f_{m-1})}{2f_{m} - f_{m-1} - f_{m+1}}$$
 3.3

Median Grouped data $M_{e} = O_{me} + \frac{c[\frac{n}{2} - f(<)]}{f_{me}}$ 3.2

Lower quartile Grouped data $Q_{1} = O_{q1} + \frac{c\binom{n}{4} - f(<)}{f_{q1}}$ Upper quartile Grouped data $Q_{3} = O_{q3} + \frac{c\binom{3n}{4} - f(<)}{f_{q1}}$ 3.8 Geometric mean Ungrouped data $GM = \sqrt[n]{x_{1} \times x_{2} \times x_{3} \times ... \times x_{n}}$ 3.4 Weighted Grouped data

arithmetic mean weighted $\overline{x} = \frac{\sum f_i x_i}{\sum f_i}$

ω

3.5

MEASURES OF DISPERSION AND SKEWNESS

RangeRange = Maximum value – Minimum value + 1
$$= x_{max} - x_{mbn} + 1$$
3.9

Variance Mathematical – ungrouped data

е. Э

$$s^{2} = \frac{\Sigma(x_{i} - \bar{x})^{2}}{(n-1)}$$
3.10

Computational – ungrouped data

$$s^{2} = \frac{\Sigma x_{i}^{2} - n\overline{x}^{2}}{(n-1)}$$
3.11

Standard
$$s = \sqrt{s^2}$$
 3.12 deviation

Coefficient of
$$CV = \frac{s}{\overline{x}} \times 100\%$$
 3.13 variation

9

Pearson's
$$sk_p = \frac{n\Sigma(x_i - \bar{x})^3}{(n-1)(n-2)s^3}$$
 3.14
coefficient of

skewness

$$sk_p = \frac{3 \text{ (Mean - Median)}}{\text{Standard deviation}}$$
 (approximation) 3.15

PROBABILITY CONCEPTS

Conditional
probability
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
4.2

Addition ruleNon-mutually exclusive events
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
4.3

$$P(A \cup B) = P(A) + P(B)$$
4.4

Multiplication ruleStatistically dependent events
$$P(A \cap B) = P(A/B) \times P(B)$$
4.5Statistically independent events
 $P(A \cap B) = P(A) \times P(B)$ 4.6 $n! = n$ factorial $n \times (n - 1) \times (n - 2) \times (n - 3) \times ... \times 3 \times 2 \times 1$ 4.8Permutations $_nP_r = \frac{n!}{(n-r)!}$ 4.10Combinations $_nC_r = \frac{n!}{r!(n-r)!}$ 4.11PROBABILITY DISTRIBUTIONS4.11Binomial
distribution $P(x) = _nC_x p^x(1-p)^{(n-x)}$ for $x = 0, 1, 2, 3, ..., n$ Binomial
descriptive
measuresMean
 $x = np$ $\mu = np$
 $\sqrt{np(1-p)}$ Standard deviation
 $\sigma = \sqrt{np(1-p)}$ 5.2Poisson
descriptive
measuresMean
 $\mu = a$
 $\sqrt{n} = \sqrt{n}$

Standard normal
$$z = \frac{x-\mu}{\sigma}$$
 5.6
probability

CONFIDENCE INTERVALS

ł

Single meann large; variance known $\overline{x} - z \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z \frac{\sigma}{\sqrt{n}}$ (lower limit)(upper limit)	7.1
n small; variance unknown $\overline{x} - t_{(n-1)} \frac{s}{\sqrt{n}} \le \mu \le \overline{x} + t_{(n-1)} \frac{s}{\sqrt{n}}$ (lower limit) (upper limit)	7.2
Single proportion $p-z\sqrt{\frac{p(1-p)}{n}} \le \pi \le p + z\sqrt{\frac{p(1-p)}{n}}$ (lower limit) (upper limit)	7.3

Paired t-test
$$t\text{-stat} = \frac{\overline{x}_d - \mu_d}{\frac{5}{\sqrt{n}}}$$

where $\mu_d = (\mu_1 - \mu_2)$

and
$$s_d = \sqrt{\frac{\sum (x_d - \overline{x}_d)^2}{n-1}}$$

Differences
between two
proportions

$$z-stat = \frac{(p_1 - p_2) - (\pi_1 - \pi_2)}{\sqrt{\hat{\pi}(1 - \hat{\pi})[\frac{1}{n_1} + \frac{1}{n_2}]}} \text{ where } \hat{\pi} = \frac{x_1 + x_2}{n_1 + n_2}; p_1 = \frac{x_1}{n_1}; p_2 = \frac{x_2}{n_2} 9.8$$

Chi-Squared
$$\chi^2$$
-stat = $\Sigma \frac{(f_o - f_e)^2}{f_e}$ 10.1

Overall mean
$$\overline{x} = \frac{\Sigma \Sigma x_g}{N}$$
 11.2

HYPOTHESES TESTS

ł

Total sum of squares (SSTotal) $= \sum_{i} \sum_{j} (x_{ij} - \overline{x})^2$ 11.3 Single mean Variance known $z\text{-stat} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{\pi}}}$ ۲. 8.1

8.2

8.3

$$SST = \sum_{j}^{k} n_{j} (\bar{x}_{j} - \bar{x})^{2}$$
 11.4

$$SSE = \sum_{i} \sum_{i} (x_{ij} - \bar{x}_{j})^2$$
 11.5

SSTotal = SST + SSE 11.6

$$MSTotal = \frac{SSTotal}{N-1}$$
 11.7

$$MST = \frac{SST}{k-1}$$
 11.8

$$MSE = \frac{SSE}{N-k}$$
 11.9

9.2
$$F-stat = \frac{MST}{MSE}$$
 11.10

Variance unknown; n small $t-stat = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$ **Single proportion** t-stat = $\frac{p-\pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}$

Difference between two means

Variances known
z-stat =
$$\frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$
 9.1

Variances unknown;
$$n_1$$
 and n_2 small

$$t\text{-stat} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_p^2 |\bar{n}_1 + \frac{1}{n_2}|}} \quad \text{where } s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \quad 9.2$$

456

457

9.5